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Abstract—Recently, membrane computing, which is a compu-
tational model based on cell activity, has considerable attention
as one of new paradigms of computations. In the membrane
computing, the asynchronous parallelism must be considered to
make the membrane computing more realistic.
In the present paper, we propose asynchronous P systems that

execute a compare-and-exchange operation and sorting. We first
propose an asynchronous P system for the compare-and-exchange
operation of two binary numbers of m bits. The P system works
in O(m) steps by using O(m) types of objects, a constant number
of membranes and evolution rules of size O(m). We next propose
an asynchronous P system for sorting of n binary numbers of m
bits by using the above asynchronous P system as a sub-system.
The P system works in O(mn2) steps by using O(mn) types of
objects, a constant number of membranes, and evolution rules
of size O(mn).

I. INTRODUCTION

A number of next-generation computing paradigms have
been considered due to limitation of silicon-based computa-
tional hardware. As an example of the computing paradigms,
natural computing, which works using natural materials for
computation, has considerable attention. A membrane comput-
ing, which is a computational model inspired by the structures
and behaviors of living cells, is a representative of the natural
computing.
A basic feature of the membrane computing was introduced

by in [1] as a P system. The P system consists mainly of
membranes and objects. A membrane is a computing cell, in
which independent computation is executed, and may contain
objects and other membranes. Each object evolves according
to evolution rules associated with a membrane in which the
object is contained.
The P system and most variants have been proved to be

universal [2], and several P systems have been proposed for
solving NP problems [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12] since a exponential number of membranes can be
created in a polynomial number of steps on the P system.
In addition, P systems for basic operations, such as logic or
arithmetic operations, have been proposed in [13], [14] to
apply membrane computing in a wide range problems.
However, synchronous application of evolution rules is

assumed on the above P systems with the maximal parallelism,
which is a main feature of the P systems. The maximal
parallelism means that all applicable rules in all membranes
are applied synchronously.

On the other hand, there is obvious asynchronous paral-
lelism in the cell biochemistry. The asynchronous parallelism
means that all objects may react on rules with different speed,
and evolution rules are applied to objects independently. Since
all objects in a living cell basically works in asynchronous
manner, the asynchronous parallelism must be considered to
make P system more realistic model.
For considering asynchronous parallelism, a number of P

systems have been proposed in [15], [16], [17], [16], [18].
As an example, two asynchronous P systems [17] have been
proposed for solving SAT and Hamiltonian cycle problem, and
a number of P systems [18] have been proposed for graph
problems. The P systems solve NP problems in a polynomial
number of parallel steps. In addition, another asynchronous
P system [16] has been proposed for computing arithmetic
operations and factorization.
As complexity of the asynchronous P system, we consider

two kinds of numbers, which are a number of sequential steps
and a number of parallel step. The numbers of sequential steps
is a number of executed steps in case that rules are applied
sequentially, and the number of parallel steps is a number of
executed steps with maximal parallelism.
In the present paper, we propose asynchronous P systems

that executes a compare-and-exchange operation and sorting,
which are basic operations for computation. We first propose
an asynchronous P system for the compare-and-exchange op-
eration of two binary numbers of m bits. The P system works
in O(m) sequential and parallel steps by using O(m) types of
objects, a constant number of membranes and evolution rules
of size O(m).
We next propose an asynchronous P system for sorting of

n binary numbers of m bits by using the above asynchronous
P system as a sub-system. The P system works in O(mn2)
sequential and parallel steps by using O(mn) types of objects,
a constant number of membranes, and evolution rules of size
O(mn).

II. PRELIMINARIES

A. Computational model for membrane computing

Several models have been proposed for membrane comput-
ing. We briefly introduce a basic model of the P system in
this subsection. The P system consists mainly of membranes
and objects. A membrane is a computing cell, in which
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Fig. 1. An example of membrane structure

independent computation is executed, and may contain objects
and other membranes. In other words, the membranes form
nested structures. In the present paper, each membrane is
denoted by using a pair of square brackets, and the number on
the right-hand side of each right-hand bracket denotes the label
of the corresponding membrane. An object in the P system is
a memory cell, in which each data is stored, and can divide,
dissolve, and pass through membranes. In the present paper,
each object is denoted by finite strings over a given alphabet,
and is contained in one of the membranes.
For example, [[a]2[b]3]1 and Figure 1 denote the same

membrane structure that consists of three membranes. The
membrane labeled 1 contains two membranes labeled 2 and 3,
and the two membranes contain objects a and b, respectively.
Computation of P systems is executed according to evolu-

tion rules, which are defined as rewriting rules for membranes
and objects. All objects and membranes are transformed in
parallel according to applicable evolution rules. If no evolution
rule is applicable for objects, the system ceases computation.
Now, we formally define a P system and the sets used in

the system as follows.

Π = (O, μ, ω1, ω2, · · · , ωm, R1, R2, · · · , Rm)

O: O is the set of all objects used in the system.
ωi: Each ωi is a set of objects initially contained only in

the membrane labeled i.
Ri: Each Ri is a set of evolution rules that are applicable

to objects in the membrane labeled i.
In the present paper, we assume that input objects are

given from the outside region into the outermost membrane,
and computation is started by applying evolution rules. We
also assume that output objects are sent from the outermost
membrane to the outside region. In membrane computing,
several types of rules are proposed. In the present paper, we
consider five basic rules of the following forms.
(1) Object evolution rule: [ a ]h → [ b ]h

where h ∈ H and a, b ∈ O. Using the rule, an object
a evolves into another object b. (We omit the brackets
in each evolution rule for cases that a corresponding
membrane is obvious.)

(2) Send-in communication rule: a[ ]h → [ b ]h
where h ∈ H , and a, b ∈ O. Using the rule, an
object a is sent into the membrane, and can evolve
into another object b.

(3) Send-out communication rule: [ a ]h → [ ]hb
where h ∈ H , and a, b ∈ O. Using the rule, an object

a is sent out of the membrane, and can evolve into
another object b.

(4) Dissolution rule: [ a ]h → b
where h ∈ H , and a, b ∈ O. Using the rule, the
membrane, which contains object a, is dissolved,
and the object can evolve into another object b. (The
outermost membrane cannot be dissolved.)

(5) Division rule: [ a ]h → [ b ]h[ c ]h
where h ∈ H , and a, b ∈ O. Using the rule,
the membrane, which contains object a, is divided
into two membranes that contain objects b and c,
respectively.

We assume that each of the above rules is applied in a
constant number of biological steps. In the following sections,
we consider the number of steps executed in a P system as
the complexity of the P system.

B. Maximal parallelism and asynchronous parallelism

In the standard model in membrane computing, which is
a P system with maximal parallelism, all of the above rules
are applied in a non-deterministic maximally parallel manner.
In one step of computation of the P system, each object
is evolved according to one of applicable rules. (In case
there are several possibilities, one of the applicable rules is
non-deterministically chosen.) All object, for which no rules
applicable, remain unchanged to the next step. In other words,
all applicable rules are applied in parallel in each step of
computation.
On the other hand, we propose asynchronous P systems,

which assume that evolution rules are applied in fully asyn-
chronous manner. In the asynchronous P systems, any number
of applicable evolution rules is applied in each step of com-
putation. In the other words, the asynchronous P system can
be executed sequentially, and also can be executed in maximal
parallel manner.
The reason why we assume the asynchronous parallelism

in this paper is based on the fact that every living cell
acts independently and asynchronously. Since the standard P
system ignores the asynchronous feature of living cells, the
asynchronous P system is a more realistic computation model
for cell activities.
We now show an example for difference between the P

system with maximal parallelism and the asynchronous P
system. We define P system Π and the sets used in the system
as follows.

Π = (O, μ, ω1, R1)

• O = {a, b, c, d, e}
• μ = [ ]1
• ω1 = φ
• R1 = {a → b, bc → d, c → e}
We now show an example of the computation of the P

system Π. Let us assume that input objects aac are given into
the membrane from the outside region.
We first consider a computation of Π on the standard P

system. In the initial state, the applicable rules are a → b and



c → e, and the two rules are applied in parallel with maximal
parallelism. Then, input objects are evolved into bbe after the
first computation step in the P system. Since the object bbe
cannot be evolved using evolution rules in R1, the computation
on the P system is halted.
We next consider a computation of Π on the asynchronous

P system. In the initial state of the asynchronous P system,
the applicable rules are a → b and c → e, and the two rules
are applied asynchronously. Then, the input objects aac can
be evolved into bbe, abe, bbc, abc or aae in the first step of
the computations. In this case, objects bbc and abc can be
evolved into bd and ad in the second step of the computation,
respectively.
Therefore, a number of executions are possible in the

asynchronous P system, and the evolution rules in the standard
P system, which assumes a maximal parallel manner, may not
work in an asynchronous parallel manner.
In the asynchronous P system, all evolution rules can be

applied completely in parallel, which is the same as the
conventional P system, or all evolution rules can be applied
sequentially. We define the number of steps executed in the
asynchronous P system in the maximal parallel manner as
the number of parallel steps. We also define the number of
steps in the case that the applicable evolution rules are applied
sequentially as the number of sequential steps. The numbers
of parallel and sequential steps indicate the best and worst
case complexities for the asynchronous P system. In addition,
the proposed asynchronous P system must be guaranteed to
output a correct solution in any asynchronous execution.

C. Representation of binary numbers with objects

In this subsection, we describe a unified representation of
a binary number with objects. The representation is similar
to the binary notation of [14], and one object corresponds
to one bit of a binary number. Therefore, we use O(mn)
objects to denote n binary numbers of m bits. In addition, the
representation enables the addressing feature, i.e., each binary
number is stored in a given address.
Let Vi,m−1, Vi,m−2, · · · , Vi,0 be m Boolean values stored in

address i. In case that the values denote a non-negative integer
Vi, the following expression holds.

Vi =

m−1∑

j=0

Vi,j × 2j

.
We use the following m objects to denote a binary number

of m bits. In the objects, Ai and Bj denote the address and
the bit position, respectively, in which each value is stored.

〈Ai, Bm−1, Vi,m−1〉, 〈Ai, Bm−2, Vi,m−2〉, · · · , 〈Ai, B0, Vi,0〉
The above objects are referred to as memory objects. For
example, the following four memory objects denote a binary
number 1000, which is stored in address 1.

〈A1, B3, 1〉, 〈A1, B2, 0〉, 〈A1, B1, 0〉, 〈A1, B0, 0〉

III. COMPARE-AND-EXCHANGE

In this section, we present an asynchronous P system for
the compare-and-exchange operation of two binary numbers
of m bits. The input of the compare-and-exchange operation
is a pair of two values p, q, and the output of the operation
is also a pair of two values x, y such that x = min{p, q} and
y = max{p, q}. We first explain an input and an output of the
compare-and-exchange operation for the P system, and then,
show an outline and details of the P system with an example.
Finally, we discuss time complexity of the proposed P system.
‘

A. Input and output

An input and an output of the compare-and-exchange oper-
ation are expressed using memory objects described in Section
2.
We assume that two input binary numbers ofm bits is stored

in addresses p and q. The following two sets of objects are
given as an input in the outermost membrane.

〈Ap, Bm−1, Vp,m−1〉, 〈Ap, Bm−2, Vp,m−2〉, · · · , 〈Ap, B0, Vp,0〉
〈Aq , Bm−1, Vq,m−1〉, 〈Aq, Bm−2, Vq,m−2〉, · · · , 〈Aq, B0, Vq,0〉
An output of the compare-and-exchange operation, which

is a pair of two binary numbers stored in addresses x and y,
is also given as sets of memory objects as follows.

〈Ax, Bm−1, Vx,m−1〉, 〈Ax, Bm−2, Vx,m−2〉, · · · , 〈Ax, B0, Vx,0〉
〈Ay , Bm−1, Vy,m−1〉, 〈Ay, Bm−2, Vy,m−2〉, · · · , 〈Ay, B0, Vy,0〉
B. An asynchronous P system for the compare-and-exchange

We first explain an overview of the asynchronous P sys-
tem for the compare-and-exchange operation. The membrane
structure used in the computation is the outermost membrane
only such that [ ]1.
The computation of the P system consists of the following

3 steps.

Step 1: Find the most significant bit, which is the left-most
bit position such that Boolean values of two binary
numbers p and q differs. Then, compute the relation
between p and q from the most significant bit.

Step 2: In case that p ≥ q, copy all Boolean values of
p and q to memory objects that denotes y and x,
respectively. In the other case, copy all Boolean
values of p and q to memory objects that denotes
x and y, respectively.

Step 3: Send out memory objects that denote x and y from
the outermost membrane.

We now explain outline of each step of the computation. In
Step 1, the most significant bit is searched from the higher bit
to the lower bit applying the following two sets of evolution
rules.

R1,1,1 = {〈Ap, Bi, V 〉〈Aq, Bi, V 〉〈CB, i〉
→ 〈Ap, Bi, V 〉〈Aq , Bi, V 〉〈CB, i − 1〉
| V ∈ {0, 1}, 1 ≤ i ≤ m− 1}



R1,1,2 = {〈Ap, Bi, 1〉〈Aq, Bi, 0〉〈CB, i〉
→ 〈Ap, Bi, 1〉〈Aq, Bi, 0〉〈GTE〉
| 0 ≤ i ≤ m− 1}
∪{〈Ap, Bi, 0〉〈Aq, Bi, 1〉〈CB, i〉
→ 〈Ap, Bi, 0〉〈Aq, Bi, 1〉〈LT 〉
| 0 ≤ i ≤ m− 1}

∪{〈Ap, B0, V 〉〈Aq , B0, V 〉〈CB, 0〉
→ 〈Ap, B0, V 〉〈Aq, B0, V 〉〈GTE〉
| V ∈ {0, 1}}

In the above evolution rules, object 〈CB, i〉 denotes current
bit position for comparison of two Boolean values. In case
that two Boolean values are equal, except for the lowest bits,
evolution rules in R1,1,1 is applied, and the comparison is
moved to the lower bit position. In the other case, one of
objects 〈GTE〉 and 〈LT 〉, which denote “greater than or
equal to” and “less than” respectively, is created according
to evolution rules in R1,1,2.
In Step 2, Boolean values that denote p and q are copied to

memory objects that denote x and y according to the results
of the comparison in Step 1. Step 2 is executed applying the
following set of evolution rule.

R1,2 = {〈GTE〉 → 〈EX,m− 1〉, 〈LT 〉 → 〈CP,m − 1〉}
∪{〈Ap, Bi, Vp〉〈Aq , Bi, Vq〉〈EX, i〉
→ 〈Ax, Bi, Vq〉〈Ay, Bi, Vp〉〈EX, i − 1〉,
〈Ap, Bi, Vp〉〈Aq, Bi, Vq〉〈CP, i〉
→ 〈Ax, Bi, Vp〉〈Ay , Bi, Vq〉〈CP, i − 1〉
| Vp, Vq ∈ {0, 1}, 1 ≤ i ≤ m− 1}

∪{〈EX,−1〉 → 〈CB,m− 1〉,
〈CP,−1〉 → 〈CB,m− 1〉}

In the above R1,2, object 〈EX, i〉 executes exchange of two
input values p and q, i.e. the object copies values p and q to y
and x from the higher bit to the lower bit. On the other hand,
object 〈CP, i〉 similarly copies two input values p and q to x
and y. At the end of Step 2, object 〈CB,m − 1〉 is created
for initializing the object for the next compare-and-exchange
operation.
In Step 3, memory objects, which denote x and y, are sent

out from the outermost membrane applying the following set
of send-out communication rules.

R1,3 = {[〈Ax, Bi, Vx〉〈Ay , Bi, Vy〉]1
→ [ ]1 〈Ax, Bi, Vx〉〈Ay , Bi, Vy〉
| Vx, Vy ∈ {0, 1}, 0 ≤ i ≤ m− 1}

Note that Step 3 may be executed before finishing Step
2 because we assume the asynchronous P system. In any
execution of the P system, the P system output correct results
at the end of computation because sets of evolution rules is
designed to be applied sequentially.

1
<Ap,B3,1> <Ap,B2,0> <Ap,B1,0> <Ap,B0,0>

<Aq,B3,1> <Aq,B2,1> <Aq,B1,1> <Aq,B0,0>

 <CB,3>

1
<Ap,B3,1> <Ap,B2,1> <Ap,B1,0> <Ap,B0,0>

<Aq,B3,1> <Aq,B2,0> <Aq,B1,1> <Aq,B0,0>

                    <CB,2>

R1,1,1

1
<Ap,B3,1> <Ap,B2,1> <Ap,B1,0> <Ap,B0,0>

<Aq,B3,1> <Aq,B2,0> <Aq,B1,1> <Aq,B0,0>

                    <GTE>

R1,1,2

1
<Ax,B3,1> <Ax,B2,1> <Ax,B1,0> <Ax,B0,0>

<Ay,B3,1> <Ay,B2,0> <Ay,B1,1> <Ay,B0,0>

  <CB,3>

R1,2

R1,3

Fig. 2. An example of execution of Πce

We now formally define P system πce that executes the
compare-and-exchange operation for two binary numbers of
m bits.

Πce = (O, μ, ω1, R1)

O = {〈Ap, Bi, Vp〉, 〈Aq, Bi, Vq〉,
〈Ax, Bi, Vx〉, 〈Ay , Bi, Vy〉
| Vp, Vq, Vx, Vy ∈ {0, 1}, 0 ≤ i ≤ m− 1}

∪{〈CB, i〉 | 0 ≤ i ≤ m− 1}
∪{〈EX, i〉, 〈CP, i〉 | − 1 ≤ i ≤ m− 1}
∪{〈GTE〉, 〈LT 〉}

μ = [ ]1

ω1 = {〈CB,m− 1〉}
R1 = R1,1,1 ∪R1,1,2 ∪R1,2 ∪R1,3

Figure 2 illustrates an example of an execution of the P
system Πce. In the example, two input binary numbers are
p = 1100 and q = 1010, and the memory objects that denote
p and q are given from the outside region into the P system.
Then, the comparison for the first bit is executed applying
R1,1,1, and the comparison is moved the the next bit.
In the next step, a set of rule R1,1,2 is applied, and object

〈GTE〉 is created in the membrane, and the object enables



R1,2. After application of R1,2, exchanged values are sent out
from the outermost membrane applying R1,3.

C. Complexity of the P system

We now consider complexity of the proposed P system
Πce. Both of the number of sequential and parallel steps in
Step 1 and Step 2 are O(m) because the steps are executed
sequentially. The number of sequential and parallel steps in
Step 3 is O(m) and O(1), respectively, because the step can
executed in parallel.
Since the number of types of objects in the P system is

O(m) and the number of kinds of evolution rules is also O(m),
we obtain the following theorem for Πce.
Theorem 1: An asynchronous P system Πce, which exe-

cutes compare-and-exchange operation of two binary numbers
ofm bits, works in in O(m) sequential and parallel steps using
O(m) types of objects and evolution rules of size O(m). �

IV. SORTING

We next show an asynchronous P system for sorting n
binary numbers of m bits. An idea of the P system is based
on the odd-even transposition sort [19], and the P system Πce,
which is described in previous section, is used as a sub-system.
We first explain an input and an output of sorting for our P
system, and then, show an outline and details of our P system.
Finally, we discuss time complexity of the proposed P system.

A. Input and output

We assume that input of sorting is n binary numbers
V0, V1, · · · , Vn−1, and also assume that the numbers are stored
in addresses X0, X1, · · ·Xn−1. The binary numbers are given
as a set of memory objects given below.

〈X0, Bm−1, V0,m−1〉〈X0, Bm−2, V0,m−2〉 · · · 〈X0, B0, V0,0〉
〈X1, Bm−1, V1,m−1〉〈X1, Bm−2, V1,m−2〉 · · · 〈X1, B0, V1,0〉

...

〈Xn−1, Bm−1, Xn−1,m−1〉〈Xn−1, Bm−2, Xn−1,m−2〉 · · ·
· · · 〈An−1, B0, Vn−1,0〉

We also assume that output of sorting is a set of binary
numbers stored in addresses Y0, Y1, · · ·Yn−1. The memory
objects for output are given below.

〈Y0, Bm−1, V0,m−1〉〈Y0, Bm−2, V0,m−2〉 · · · 〈Y0, B0, V0,0〉
〈Y1, Bm−1, V1,m−1〉〈Y1, Bm−2, V1,m−2〉 · · · 〈Y1, B0, V1,0〉

...

〈Yn−1, Bm−1, Vn−1,m−1〉〈Yn−1, Bm−2, Vn−1,m−2〉 · · ·
· · · 〈Yn−1, B0, Vn−1,0〉

B. An asynchronous P system for sorting

We first explain an overview of the asynchronous P system
for sorting. The membrane structure used in the computation
consists of three membranes such that [ [ ]ce odd [ ]ce even]1,
where membranes ce odd and ce even is a P system for the
compare-and-exchange operation for pairs of binary numbers.

The computation of the P system consists of the following
steps.
Step 1: Repeat the following two sub-steps, (1-1) and (1-2),

n
2 times, and send out obtained memory objects from
the outermost membrane.

(1-1) Send memory objects V0, V1, · · ·Vn−1 into mem-
brane ce odd. Then, execute the compare-and-
exchange operation for n

2 pairs given below. (We call
the the compare-and-exchange step odd exchange
step.)

(V2i, V2i+1) (0 ≤ i ≤ n

2
− 1)

The above memory strands are sent out from the
membrane after the odd exchange step.

(1-2) Send memory objects that denote V0, V1, · · ·Vn−1

into membrane ce even. Then, execute the compare-
and-exchange operation for n

2 pairs given below. (We
call the compare-and-exchange step even exchange
step.)

(V2i−1, V2i) (1 ≤ i ≤ n

2
− 1)

The above memory strands are also sent out from the
membrane after the even exchange step.

We now explain an outline of each step of the computation.
First of all, we consider two P systems, Πce odd and Πce even,
which execute the odd and even exchange steps. Since each
pair of compare-and-exchange operation is executed indepen-
dently from the other pairs, Πce odd and Πce even are obtained
by modifying Πce. We assume that these two P systems are
two membranes ce odd and ce even.
We next explain the other steps for the P system. Since

we assume an asynchronous P system, we must consider how
to execute the above step synchronously, i.e., (1-1) and (1-2)
must not be executed simultaneously.
In (1-1), input objects are moved into membrane ce odd.

This step is executed applying the following evolution rules.

R1,1,1 = {〈Xi, Bj , V 〉〈MO, i, j〉[ ]ce odd

→ [〈Xi, Bj , V 〉〈MO, i, j〉]ce odd

| V ∈ {0, 1}, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1}
∪{[〈MO, i, j〉]ce odd → [ ]ce odd〈MO, i, j + 1〉

| 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 2}
∪{[〈MO, i,m− 1〉]ce odd

→ [ ]ce odd〈MO, i+ 1, 0〉
| 0 ≤ i ≤ n− 1}

∪{〈MO, n, 0〉〈C, k〉 → 〈ME , 0, 0〉〈C, k + 1〉
| 0 ≤ k ≤ n− 1}

In the above R1,1,1, object 〈Ai, Bj , Vi,j〉 is moved
into membrane ce odd using object 〈MO, i, j〉. The object
〈MO, i, j〉 first moves memory objects stored in address 0,
next moves memory objects stored in address 1, and so on.
After all memory objects are moved into membrane ce odd,
the object is set to 〈ME , 0, 0〉, which is an object used to move
memory object into membrane ce even. In addition, object



〈C, k〉 is used to count the number of steps, and the object is
incremented at the end of (1-1).
After moving memory objects into membrane ce odd, the

compare-and-exchange operation is executed in the membrane,
and all memory objects are asynchronously sent out from
membrane ce odd.
In (1-2), input objects are moved into membrane ce odd

using the following R1,1,2, which is similar to R1,1,1.

R1,1,2 = {〈Xi, Bj , V 〉〈ME , i, j〉[ ]ce even

→ [〈Xi, Bj , V 〉〈ME , i, j〉]ce even

| V ∈ {0, 1}, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1}
∪{[〈ME , i, j〉]ce even

→ [ ]ce even〈ME , i, j + 1〉
| 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 2}

∪{[〈ME , i,m− 1〉]ce even

→ [ ]ce even〈M, i+ 1, 0〉
| 0 ≤ i ≤ n− 1}

∪{〈ME , n, 0〉〈C, k〉 → 〈MO, 0, 0〉〈C, k + 1〉
| 0 ≤ k ≤ n− 1}

After n
2 times executions of (1-1) and (1-2), sorting is

completed, and object 〈MO, 0, 0〉 and 〈C, n〉is obtained. Then,
all memory objects are sent out applying the following R1,2.

R1,2 = {〈MO, 0, 0〉〈C, n〉 → 〈S, 0, 0〉}
∪{〈Xi, Bj , V 〉〈S, i, j〉

→ 〈Yi, Bj , V 〉〈S, i, j + 1〉
| V ∈ {0, 1}, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 2}

∪{〈Xi, Bm−1, V 〉〈S, i,m− 1〉
→ 〈Yi, Bm−1, V 〉〈S, i + 1, 0〉
| V ∈ {0, 1}, 0 ≤ i ≤ n− 1}

∪{[〈Yi, Bj , V 〉]1 → [ ]1〈Yi, Bj , V 〉
| V ∈ {0, 1}, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1}

∪{〈S, n, 0〉 → 〈MO, 0, 0, 1〉}
We now formally define P system Πsort that executes

sorting for n binary numbers of m bits.

Πsort = (O, μ, ω1, ωce odd, ωce even, R1, Rce odd, Rce even)

O = {〈Xi, Bj , V 〉, 〈Yi, Bj , V 〉 | V ∈ {0, 1},
0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1}

∪{〈MO, i, j〉, 〈ME, i, j〉
| 0 ≤ i ≤ n, 0 ≤ j ≤ m− 1}

∪{〈C, k〉 | 0 ≤ k ≤ n}
∪{〈S, i, j〉 | 0 ≤ i ≤ n, 0 ≤ j ≤ m− 1}

μ = [ [ ]ce even[ ]ce odd]1

ω1 = {〈MO, 0, 0, 1〉}
R1 = R1,1,1 ∪R1,1,2 ∪R1,2

(ωce odd, ωce even, Πce. Rce odd and Rce even are omitted.)

C. Complexity of the P system

We now consider complexity of the proposed P system
Πsort. The numbers of parallel and sequential steps in (1-1)
and (1-2) are O(m) parallel steps and O(mn) sequential steps
because compare-and-exchange operations are executed for n

2
pairs of binary numbers. The other steps, which sequentially
move memory objects, works in O(nm). Since (1-1) and (1-
2) is repeated n

2 times, time complexity of the P system is
O(mn2) sequential and parallel steps.
The number of types of objects in the P system is O(mn),

and the number of kinds of evolution rules is also O(mn).
Therefore, we obtain the following theorem for Πsort.
Theorem 2: An asynchronous P system Πsort, which sorts

n binary numbers of m bits, works in O(mn2) sequential and
parallel steps usingO(mn) types of objects and evolution rules
of size O(mn). �

V. CONCLUSIONS

We proposed asynchronous P systems for the compare-and-
exchange operation and sorting. The proposed P systems are
fully asynchronous, i.e. any number of applicable rules may be
applied in one step of the P systems. The first P system for the
compare-and-exchange operation works in O(m) sequential
and parallel steps for two binary numbers of m bits, and the
second P system for sorting works in O(mn2) sequential and
parallel steps for n binary numbers of m bits. Although the
number of steps is not small as well-known sorting algorithms,
the proposed P system shows that the basic operations can be
executed on the asynchronous P system.
As our future work, we are considering reduction of the

numbers of parallel steps on the proposed asynchronous P
systems.
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knapsack problem using P systems with active membranes,” Membrane
Computing, vol. 2933, pp. 250–268, 2004.

[11] ——, “Solving the subset-sum problem by P systems with active
membranes,” New Generation Computing, vol. 23, no. 4, pp. 339–356,
2005.
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