
A Warp-synchronous Implementation for Multiple-length Multiplication on the GPU

Takumi Honda, Yasuaki Ito, Koji Nakano
Department of Information Engineering,

Hiroshima University
Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527 Japan
Email: {honda, yasuaki, nakano}@cs.hiroshima-u.ac.jp

Abstract—If we process large-integers on the computer, they
are represented by multiple-length integer. Multiple-length
multiplication is widely used in areas such as scientific compu-
tation and cryptography processing. However, the computation
cost is very high since CPU does not support a multiple-length
integer. In this paper, we present a GPU implementation of
bulk multiple-length multiplications. The idea of our GPU
implementation is to adopt warp-synchronous programming.
We assign each multiple-length multiplication to one warp
that consists of 32 threads. In parallel processing using mul-
tiple threads, usually, it is costly to synchronize execution of
threads and communicate within threads. In warp-synchronous
programming, however, execution of threads in a warp can be
synchronized instruction by instruction without any barrier
synchronous operations. Also, inter-thread communication can
be performed by warp shuffle functions without accessing
shared memory. The experimental results show that our GPU
implementation on NVIDIA GeForce GTX 980 attains a speed-
up factor of 62 for 1024-bit multiple-length multiplication over
the single CPU implementation.

Keywords-Multiple-length multiplication; GPU; GPGPU;
Parallel processing; warp-synchronous programming

I. INTRODUCTION

Recent Graphics Processing Units (GPUs), which have
a lot of processing units, can be used for general purpose
parallel computation. Since GPUs have very high memory
bandwidth, the performance of GPUs greatly depends on
memory access. CUDA (Compute Unified Device Architec-
ture) [1] is the architecture for general purpose parallel com-
putation on GPUs. Using CUDA, we can develop parallel
algorithms to be implemented in GPUs. Therefore, many
studies have been devoted to implement parallel algorithms
using CUDA [2], [3], [4], [5].

Applications require arithmetic operations on integer
numbers which exceed the range of processing by a CPU
directly is called multiple-length numbers or multiple-length-
precision numbers and hence, computation of these numbers
is called multiple-length arithmetic. More specifically, appli-
cation involving integer arithmetic operations for multiple-
length numbers with size longer than 64 bits cannot be
performed directly by conventional 64-bit CPUs, because
their instruction supports integers with fixed 64 bits. To
execute such application, CPUs need to repeat arithmetic
operations for those numbers with fixed 64 bits which

increase the execution overhead. Suppose that a multiple-
length number is represented by w words, that is, a multiple-
length number is 64w bits on conventional 64-bit CPUs. The
addition of such two number can be computed in O(w) time.
However, the multiplication generally takes O(w2) time.
Multiple-length multiplication is widely used in various
applications such as cryptographic computation [6], and
computational science [7]. Since multiple-length numbers
of size thousands to several tens of thousands bits are used
in such applications, the acceleration of the computation of
their multiplications is in great demand. Also, considering
practical cases, a large number of multiplications are usually
computed. Therefore, in this work, we target at the compu-
tation for many multiple-length multiplications of such size.

Main contribution of this paper is to present an imple-
mentation of multiple-length multiplication optimized for
CUDA-enabled GPUs. The idea of our GPU implementation
is to adopt warp-synchronous programming. We assign each
multiple-length multiplication to one warp that consists of
32 threads. In parallel processing using multiple threads,
usually, it is costly to synchronize execution of threads
and communicate within threads. In warp-synchronous pro-
gramming, however, execution of threads in a warp can be
synchronized instruction by instruction without any barrier
synchronous operations. Also, inter-thread communication
can be performed by warp shuffle functions without access-
ing shared memory. Using these ideas, we propose a warp
synchronous implementation of 1024-bit multiplication on
the GPU. In addition, we show multiple-length multiplica-
tion methods for more than 1024 bits using the 1024-bit
multiplication method as a sub-routine. The experimental
results show that our GPU implementation on NVIDIA
GeForce GTX 980 attains a speed-up factor of 62 for
1024-bit multiple-length multiplication over the single CPU
implementation.

In sequential implementation, we can utilize software
libraries that support multiple-length arithmetic operations
such as GMP (GNU Multiple Precision Arithmetic Li-
brary) [8]. A sequential CPU implementation with this
library is used to compare the performance of our proposed
GPU implementation. On the other hand, there are GPU im-
plementations to accelerate multiple-length multiplications.
In paper [9], [10], GPU implementations of very large

Streaming

Multiprocessor

Core Core

Core Core

Core Core

Core Core

Shared Memory

Streaming

Multiprocessor

Shared Memory

Streaming

Multiprocessor

Shared Memory

…

Global Memory

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Figure 1: CUDA hardware architecture

integer multiplications using FFT are shown. Zhao et al.
proposed multiple-length multiplication on the GPU as one
of library functions [11]. This implementation is based on
School method that is naive multiplication. Kitano et al.
proposed a GPU implementation of parallel multiple-length
multiplication also based on School method. In the imple-
mentation, load of each thread is equalized by reordering
the computation of partial products.

The rest of this paper is organized as follows. Section II
provides an overview of the GPU architecture. Section III
describes multiple-length multiplication methods. This sec-
tion also by reviewing the warp shuffle functions considered
in this work. In Section IV, our GPU implementation of
multiple-length multiplication using warp synchronize pro-
gramming is proposed. Experimental results are shown in
Section V. Finally, Section VI concludes the paper.

II. GPU IMPLEMENTATION

We briefly explain CUDA architecture that we will use.
Figure 1 illustrates the CUDA hardware architecture. CUDA
uses three types of memories in the NVIDIA GPUs: the
global memory, the shared memory, and the registers [12].
The global memory is implemented as an off-chip DRAM
of the GPU, and has large capacity, say, 1.5-12 Gbytes,
but its access latency is very long. The shared memory
is an extremely fast on-chip memory with lower capacity,
say, 16-64 Kbytes. The registers in CUDA are placed on
each core in the multiprocessor and the fastest memory,
that is, no latency is necessary. However, the size of the
registers is the smallest during them. The efficient usage
of the global memory and the shared memory is a key for
CUDA developers to accelerate applications using GPUs. In
particular, we need to consider the coalescing of the global
memory access and the bank conflict of the shared memory
access [13], [14]. To maximize the bandwidth between the
GPU and the DRAM chips, the consecutive addresses of the
global memory must be accessed in the same time. Thus,
threads should perform coalescing access when they access
to the global memory.

CUDA parallel programming model has a hierarchy of
thread groups called grid, block and thread. A single grid
is organized by multiple blocks, each of which has equal
number of threads. The blocks are allocated to streaming
processors such that all threads in a block are executed by the
same streaming processor in parallel. All threads can access
to the global memory. However, as we can see in Figure 1,
threads in a block can access to the shared memory of the
streaming processor to which the block is allocated. Since
blocks are arranged to multiple streaming processors, threads
in different blocks cannot share data in shared memories.
Also, the registers are only accessible by a thread, that is,
the registers cannot be shared by multiple threads.

CUDA C extends C language by allowing the programmer
to define C functions, called kernels. By invoking a kernel,
all blocks in the grid are allocated in streaming processors,
and threads in each block are executed by processor cores
in a single streaming processor. In the execution, threads
in a block are split into groups of thread called warps. A
wrap is an implicitly synchronized group of threads. Each
of these warps contains the same number of threads and
is executed independently. When a warp is selected for
execution, all threads execute the same instruction. Any
flow control instruction (e.g. if-statements in C language)
can significantly impact the effective instruction throughput
by causing threads of the same warp to diverge, that is, to
follow different execution paths. If this happens, the different
execution paths have to be serialized. When all the different
execution paths have completed, the threads back to the
same execution path. For example, for an if-else statement,
if some threads in a warp take the if-clause and others take
the else-clause, both clauses are executed in serial. On the
other hand, when all threads in a warp branch in the same
direction, all threads in a warp take the if-clause, or all take
the else-clause. Therefore, to improve the performance, it is
important to make branch behavior of all threads in a warp
uniform. When one warp is paused or stalled, other warps
can be executed to hide latencies and keep the hardware
busy.

There is a metric, called occupancy, related to the number
of active warps on a streaming processor. The occupancy
is the ratio of the number of active warps per streaming
processor to the maximum number of possible active warps.
It is important in determining how effectively the hardware
is kept busy. The occupancy depends on the number of
registers, the numbers of threads and blocks, and the size
of shard memory used in a block. Namely, utilizing too
many resources per thread or block may limit the occupancy.
To obtain good performance with the GPUs, the occupancy
should be considered.

The kernel calls terminates, when threads in all blocks
finish the computation. Since all threads in a single block
are executed by a single streaming processor, the barrier
synchronization of them can be done by calling CUDA C

syncthreds() function. However, there is no direct way
to synchronize threads in different blocks. One of the
indirect methods of inter-block barrier synchronization is to
partition the computation into kernels. Since continuous ker-
nel calls can be executed such that a kernel is called after all
blocks of the previous kernel terminates, execution of blocks
is synchronized at the end of kernel calls. On the other hand,
all threads of a warp perform the same instruction at the
same time. More specifically, any synchronizing operations
are not necessary to synchronize threads within a warp.

In CUDA, warp shuffle functions allow the exchange of
32-bit data between threads within a warp, which become
available on relatively recent GPUs with compute capability
3.0 and above [12]. Threads in the warp can read other
threads’ registers without accessing the shared memory. The
exchange is performed simultaneously for all threads within
the warp. Of particular interest is the shfl() function,
that is one of the warp shuffle functions. This function
takes as parameters a local register variable x and a thread
index id. As an example, consider the following function
call shfl(x,4). The shfl(x,4) allows to transfer the
data stored in the local register variable x from a thread
whose id is 4 (Figure 2(a)). This function call corresponds
to broadcasting a register variable in a thread to the other
threads in a warp. We note that each thread has its own
local register x, that is, each x cannot be accessed from
other threads. As another example, consider the function
call shfl(x,(id+1)%w). The function call performs data
transfer like right circular shift between threads as illustrated
in Figure 2(b). In the similar way, the shfl(x,(id +w −
1)%w) allows to transfer data like left right circular shift
(Figure 2(c)). The above data exchange can be performed
via shared memory. However, the latency of shared memory
access is longer than that of the warp shuffle functions.
Since the use of shared memory may cause for decreasing
occupancy, if the warp shuffle functions can be used, they
should be used.

Warp synchronous programming [15] is a parallel pro-
gramming model such that one warp is used as an execution
unit. The characteristic of this model is that any syn-
chronous operations are not necessary. Usually, it is costly
to synchronize execution of threads and communicate within
threads. In our GPU implementation shown in the following
sections, we adopt warp synchronous programming. Also,
inter-thread communication is performed by warp shuffle
functions without accessing shared memory.

III. MULTIPLE-LENGTH MULTIPLICATION

In the following, we will represent multiple-length num-
bers as arrays of r-bit words. In general, r = 32 or 64 for
conventional CPUs. Let R denote the bit-length of numbers
and d be the number of b-bit words. Therefore, d = dRr e.
For example, a 1024-bit integer consists of 32 words. Next,

(a) broadcast

(b) right circular shift

(c) left circular shift

x = shfl(x, 4);

h g f e d c b a

e e e e e e e e

id 7 6 5 4 3 2 1 0

x

x

x = shfl(x,(id 1)%w);

h g f e d c b a

a h g f e d c b

id 7 6 5 4 3 2 1 0

x

x

x = shfl(x,(id w 1)%w);

h g f e d c b a

a h g f e d c b

id 7 6 5 4 3 2 1 0

x

x

Figure 2: Example of intra-warp data exchange using warp
shuffle functions

we will introduce several multiplication methods for such
multiple-length numbers.

A. Multiple-Length Multiplication

Suppose A and B represent two multi-length numbers.
We are multiplying A by B and the result is stored in C,
that is C = AB. To compute this multiplication, School
method is often used. The algorithm of School method is
shown in Algorithm 1(a). For simplicity, in the algorithm, the
sizes of the multiplicand and the multiplier are the same and
{x, y} denotes a concatenation of x and y. School method
multiplies the multiplicand by each word of the multiplier
and then adds up all the properly shifted results illustrated in
Figure 3(a). As illustrated in the figure, calculation of School
method is performed in the row order and some storage
needs to be allocated to store intermediate results that are
partial products. In School method, intermediate data that
are partial products need to be stored to the memory as
described at line 6 in Algorithm 1 is necessary.

To avoid storing the partial products, Comba method [16]
is used. The algorithm of Comba method is shown in
Algorithm 2. According to the algorithm, the readers may
think that it is more complicated than School method.
However, the difference is only the order of multiplications
of words and the number of multiplications of words is the

(a) School method

(b) Comba method

Figure 3: The order of word-wise multiplication for multiple-
length numbers C = A ·B

same as illustrated in Figure 3. More specifically, calculation
of Comba method is performed in the column order. In
Comba method, intermediate data also has to be stored.
However, the data corresponds to carry data for the next
column. Since the size of the carry data does not depend
on the size of numbers and it is only one or two words,
its storage can be placed to the register. Table I shows the
number of word-wise multiplications and memory access of
School and Comba methods. From the table, the number of
memory access, especially memory write, of Comba method
is greatly reduced.

Algorithm 1 School method

Input: A = (aw−1, . . . , a1, a0), B = (bw−1, . . . , b1, b0)
Output: C = AB

1: C ← 0
2: for j = 0 to w − 1 do
3: {u, v} ← 0
4: for i = 0 to w − 1 do
5: {u, v} ← aibj + ci+j + u
6: ci+j ← v
7: end for
8: c2w+i ← u
9: end for

Karatsuba method [17] is an algorithm for multiplying two
numbers that reduce the number of multiplications compared
with School method and Comba method. Let us consider
multiple-length multiplication for C = AB, where A and
B are multiple-length numbers of size R bits each. The two

Algorithm 2 Comba method

Input: A = (aw−1, . . . , a1, a0), B = (bw−1, . . . , b1, b0)
Output: C = AB

1: {t, u, v} ← 0
2: for i = 0 to w − 1 do
3: for j = 0 to i do
4: {t, u, v} ← ajbi−j + {t, u, v}
5: end for
6: ci ← v
7: v ← u, u← t, t← 0
8: end for
9: for i = w to 2w − 2 do

10: for j = i− w + 1 to w − 1 do
11: {t, u, v} ← ajbi−j + {t, u, v}
12: end for
13: ci ← v
14: v ← u, u← t, t← 0
15: end for
16: c2w−1 ← v

numbers A and B are divided into two parts of size R
2 bits

each such that A = A1 · 2
R
2 + A0 and B = B1 · 2

R
2 + B0.

The product C is computed as follows:

C = AB

= (A1 · 2
R
2 +A0)(B1 · 2

R
2 +B0)

= A1B1 · 2R + (A1B0 +A0B1) · 2
R
2 +A0A0

In School method and Comba method, there are 4 multipli-
cations A0×B0, A1×B0, A0×B1, and A1×B1. On the other
hand, in Karatsuba method, the sum of two multiplications
in the second term A1B0 +A0B1 is modified as follows:

A1B0 +A0B1 = (A1 +A0)(B1 +B0)−A1B1 −A0B0

In this deformation, computing two products A1B1 and
A0B0 beforehand, there are three multiplications A1 ×B1,
A0 × B0 and (A1 + A0) × (B1 + B0), though the number
of addition/subtraction is increased. Thus, Karatsuba method
can reduce the number of multiplications from four to three.
This idea to the partial products can be applied recursively.
Therefore, in Table— I, the number of multiplications and
memory access is shown when Karatsuba method is applied
once and then Comba method is used for smaller size of
multiplications. Also, ”Karatsuba2” in the table represents
a method such that Karatsuba method is applied twice and
then Comba method is used. According to the table, when
Karatsuba method is used, the number of multiplications
is reduced. On the other hand, the number of memory
access is increased. In the GPU, the latency of memory
access is much longer than that of 32/64 bits multiplication.
Therefore, in our implementation, Karatsuba method is not
used recursively.

Table I: The number of multiplications and memory
read/write for multiplying two w-word numbers

method multiplication memory read memory write
School w2 2w2 w2 + w
Comba w2 2w2 − 2 2w

Karatsuba 3
4
w2 3

2
w2 + 17

2
w − 2 15

2
w + 4

Karatsuba2 9
16

w2 9
4
w2 + 20w − 4 31

2
w + 14

thread 0thread 1thread 2thread 3

thread 0

thread 1

thread 2

thread 3

Figure 4: Parallel column-based multiplication

IV. PARALLEL MULTIPLE-LENGTH MULTIPLICATION FOR
THE GPU

This section presents the main contribution of this work.
We adopt warp-synchronous programming to the proposed
parallel multiple-length multiplication. In the following, w
threads, that correspond to one warp, are used and work
in parallel without any barrier synchronize operations since
threads within a warp execute the same instruction and
synchronize for each instruction. Also, the proposed parallel
multiple-length multiplication does not any use shared mem-
ory. It is a parallel algorithm that parallelizes School method
basically, called Sum-rotate multiplication. To achieve this,
we employ warp shuffle functions as described in Section II.
More specifically, data exchange methods, broadcast and
right/left circular shift, as shown in Figure 2 using warp
shuffle function shfl() are utilized. The details of the
parallel algorithm are presented next.

In the proposed approach, a product C =
(c2w−1, . . . , c1, c0) of two w-word numbers
A = (aw−1,a1, a0) and B = (bw−1, . . . , b1, b0)
is computed, where the size of each word is 32 bits. Since
w = 32 unless the value of w is not changed for changing
the GPU architecture in the future, this algorithm supports
a multiplication of two 1024-bit numbers.

Let us consider how to perform the computation using
multiple threads. A simple idea is to assign threads column
by column as illustrated in Figure 4. In the figure, threads are
assigned to two columns to balance the computation load of
each threads. However, since threads have to switch columns
in distinct timings during the computation, warp divergence,
described in Section II, occurs. This parallel approach is not
suitable for GPUs.

On the other hand, in the proposed approach, w threads,

thread 0thread 1thread 2thread 3

Figure 5: Sum-rotate multiplication

that correspond to one warp, are used. Each thread is
assigned to one of the partial products in each column.
More specifically, when w threads (thread 0, thread 1,
. . . , thread w − 1) are launched, thread i computes partial
products aib0, aib1, . . . , aibw−1 for each column as illus-
trated in Figure 5. Using this assignment of threads, almost
all operations are the same between threads, that is, warp
divergence can be avoided mostly.

In the proposed approach, since each thread takes partial
products shifting to the upper digits row by row, it is
necessary to obtain the partial products, except the carry,
from a thread assigned to the upper digits. To achieve
this, we use the inter-thread right circular shift described
in Section II. in each row, thread 0 obtains the final product
of cj . According to Figure 5, a thread assigned to the
lowest digits can obtain the lower words of the final product
c0, . . . , cw−1 for each row. On the other hand, the upper
words of cw, . . . , c2w−1 are finally computed by thread 0,
. . . , thread w − 1, respectively. After completing the multi-
plication, 2w words of the final results are placed such that
thread i has two words ci and ci+w to store the results to
consecutive address of the global memory using coalescing
access in parallel.

The details of Sum-rotate multiplication are shown in
Algorithm 3. Each step of the algorithm is executed by
w threads in parallel. First of all, in lines 3 and 4, each
thread loads one word of each from A and B stored in the
global memory and stores them to its own registers a and
b. After that, the multiplication is performed row by row as
illustrated in Figure 5. In line 6, thread j broadcasts bj to
local register b′ using the warp shuffle function to compute
the product a · b′ in the next step. In line 7, partial products
are computed including the addition of the carry from the
upper digits. Each thread obtains the partial products except
the carry from a thread assigned to the upper digits as the
carry for the next digits by right circular shift of register v in
line 8. In line 9, product ci of the final product computed by
thread 0 is transferred to the right thread using right circular
shift of register c′. Next, thread w−1, that is assigned to the
leftmost thread in Figure 5, set registers c′ and v′ to v and
0, respectively. This is for the right circular shift operations
in lines 8 and 9. Since this operation is performed only by

thread w − 1, warp divergence occurs, but the effect to the
performance seems to be very small. After that, each thread
obtains the value of the next digits in line 14. After for
loop, each thread has the lower digits of the final products
c0, . . . , cw−1, respectively. At that time, the upper digits
cw, . . . , c2w−1 has not been computed yet since each thread
still has the carry. Therefore, the while loop in lines 16 to 19,
carry propagation is performed using left circular shift until
any threads have no carry. In order to check whether any
threads have no carry, we use warp vote function any() that
evaluates truth values given from all threads of the warp and
return non-zero if any of the truth values is non-zero [12].
This while loop is iterated at most w − 1 times. After the
loop, since thread i has two words ci and ci+w, they are
stored to the global memory with coalescing access in lines
20 and 21.

Algorithm 3 Sum-rotate multiplication using a warp

Input: A = (aw−1, . . . , a1, a0), B = (bw−1, . . . , b1, b0)
Output: C = AB

1: i← id (= 0, 1, . . . , w − 1)
2: u← 0, v ← 0, c′ ← 0
3: a← ai
4: b← bi
5: for j ← 0 to w − 1 do
6: b′ ← shfl(bj , j) . Broadcast bj from thread j
7: {t, u, v} ← a · b′ + {u, v}
8: v ← shfl(v, (i+ 1)%w) . Right circular shift v
9: c′ ← shfl(c′, (i+ 1)%w) . Right circular shift c′

10: if id = w − 1 then
11: c′ ← v
12: v ← 0
13: end if
14: {u, v} ← {t, u}+ v
15: end for
16: while any(u) 6= 0 do . Loop for carry propagation
17: u← shfl(u, (i+w− 1)%w) . Left circular shift u
18: {u, v} ← u+ v
19: end while
20: ci ← c′

21: ci+w ← v

V. EXPERIMENTAL RESULTS

The main purpose of this section is to show the exper-
imental results. In order to evaluate the computing time
for multiple-length multiplication, we have used NVIDIA
GeForce GTX 980, which has 2048 cores running on
1.216MHz [18]. In the following, the computing time is
average of 10 times execution and the computing time of
the GPU does not include data transfer time between the
main memory in the CPU and the device memory in the
GPU.

First, we evaluate the performance of the multiplication
methods on the GPU. We have also implemented the single
thread implementation such that each thread computes one
multiplication. This implementation is based on the idea
proposed in [19]. In the implementation, there is no warp di-
vergence since all threads execute the same instructions, that
is, this implementation is also based on warp-synchronous
programming. In addition, to evaluate the effect of the use
of warp shuffle function, we have implemented a multi-
plication method with the shared memory instead of the
warp shuffle function. Table II shows the computing time
when 100000 multiple-length multiplications are computed.
Note that ”Karatsuba2” in the table denotes a multiplication
method such that Karatsuba method is recursively applied
twice. In the above implementations, every block has 32
threads, that is, one warp.

According to the table, we can find that one warp imple-
mentation is faster than the single thread implementation.
For data communication within threads, use of warp shuffle
functions is more effective than that of shared memory.
Regarding multiplication methods in the one warp imple-
mentation with warp shuffle functions, for no more than
8192 bits, Comba method is faster and for more, Karatsuba
method is faster than the other methods. Karatsuba2 method
is slower since the overhead such as the number of additional
additions cannot be ignored. According to the results, the
best configuration for the size of operands is selected such
that Comba method is used for 1024 to 8192 bits and
Karatsuba method is used for 16384 to 32768 bits.

We have also used Intel PC using Xeon X7460 running
on 2.6GHz to evaluate the implementation by sequential
algorithms. In the CPU implementation, we have utilized
GMP version 4.1.4. Table III shows the comparison between
CPU and GPU implementations for the computing time in
milliseconds when 100000 multiple-length multiplications
are computed. The best configuration in the above has been
used in the GPU implementation. Using the proposed GPU
implementation, the computing time can be reduced by a
factor of 18.71 to 62.88.

Table III: The comparison between CPU and GPU imple-
mentations for the computing time in milliseconds when
100000 multiple-length multiplications are computed

of bits 1024 2048 4096 8192 16384 32768
CPU 95.34 315.65 1031.40 3254.28 10505.87 30928.49
GPU 1.52 7.50 26.16 103.00 435.23 1653.45

Speed-up 62.88 42.10 39.43 31.59 24.14 18.71

VI. CONCLUSION

In this paper, we have presented a GPU implementation of
bulk multiple-length multiplications. The idea of our GPU
implementation is to adopt warp-synchronous programming.
Using this idea, we have proposed Sum-rotate multiplication

Table II: The computing time of GPU implementations in milliseconds for 100000 multiple-length multiplications

of bits
execution unit multiplication method 1024 2048 4096 8192 16384 32768

single thread
Comba 5.06 38.96 165.56 684.61 2806.77 11411.26

Karatsuba 6.59 21.62 80.22 320.46 1288.00 5333.75
Karatsuba2 5.62 16.54 58.02 219.59 867.14 3896.67

one warp (32 threads)
with shared memory

Comba 1.99 8.28 32.16 125.84 501.04 2078.12
Karatsuba — 15.64 45.56 150.34 560.37 2057.02

Karatsuba2 — — 60.24 164.61 589.34 2331.08

one warp (32 threads)
with warp shuffle functions

Comba 1.52 7.50 26.16 103.00 440.38 1729.08
Karatsuba — 12.08 35.48 118.73 435.23 1653.45

Karatsuba2 — — 53.38 144.79 490.27 1819.33

of two 1024-bit numbers. We assign each multiple-length
multiplication to one warp that consists of 32 threads. The
experimental results show that our GPU implementation
on NVIDIA GeForce GTX 980 attains a speed-up factor
of 62 for 1024-bit multiple-length multiplication over the
single CPU implementation using GNU multiple precision
arithmetic library.

REFERENCES

[1] NVIDIA Corporation, “CUDA ZONE.”
http://www.nvidia.com/page/home.html.

[2] J. Diaz, C. Muñoz-Caro, and A. Niño, “A survey of parallel
programming models and tools in the multi and many-core
era,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, pp. 1369–1386, August 2012.

[3] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Im-
plementations of parallel computation of Euclidean distance
map in multicore processors and GPUs,” in Proceedings
of International Conference on Networking and Computing,
pp. 120–127, 2010.

[4] K. Ogawa, Y. Ito, and K. Nakano, “Efficient Canny edge de-
tection using a GPU,” in International Workshop on Advances
in Networking and Computing, pp. 279–280, Nov. 2010.

[5] Z. Wei and J. JaJa, “Optimization of linked list prefix compu-
tations on multithreaded GPUs using CUDA,” in Proceedings
of International Parallel and Distributed Processing Sympo-
sium, 2010.

[6] J. Katz and Y. Lindell, Introduction to Modern Cryptography.
Chapman & Hall/CRC Cryptography and Network Security
Series, CRC Press, 2nd ed., 2014.

[7] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni,
M. H. Sherwood, and I. L. Chuang, “Experimental realization
of Shor’s quantum factoring algorithm using nuclear magnetic
resonance,” Nature, vol. 414, no. 6566, pp. 883–887, 2001.

[8] T. Granlund, “GNU MP: The GNU multiple precision arith-
metic library.” http://gmplib.org/.

[9] N. Emmart and C. C. Weems, “High precision integer
multiplication with a GPU using Strassen’s algorithm with
multiple FFT sizes,” Parallel Processing Letters, vol. 21,
no. 3, pp. 359–375, 2011.

[10] H. Bantikyan, “Big integer multiplication with CUDA FFT
(cuFFT) library,” International Journal of Innovative Re-
search in Computer and Communication Engineering, vol. 2,
no. 11, pp. 6317–6325, 2014.

[11] K. Zhao and X. Chu, “GPUMP: A multiple-precision integer
library for GPUs,” in Proc. of 2010 IEEE 10th Interna-
tional Conference on Computer and Information Technology,
pp. 1164–1168, 2010.

[12] NVIDIA Corporation, CUDA C Programming Guide Version
7.0, 2015.

[13] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano,
“Implementations of a parallel algorithm for computing Eu-
clidean distance map in multicore processors and GPUs,”
International Journal of Networking and Computing, vol. 1,
pp. 260–276, July 2011.

[14] NVIDIA Corporation, CUDA C Best Practice Guide Version
7.0, 2015.

[15] NVIDIA Corporation, Tuning CUDA Applications for Kepler
Version 7.0, 2015.

[16] P. G. Comba, “Exponentiation cryptosystems on the IBM
PC,” IBM Systems Journal, vol. 29, no. 4, pp. 526–538, 1990.

[17] A. Karatsuba and Y. Ofman, “Multiplication of multi-
digit numbers on automata,” Doklady Akademii Nauk SSSR,
vol. 145, no. 2, pp. 293–294, 1962.

[18] NVIDIA Corporation, “Whitepaper NVIDIA GeForce GTX
980 v1.1,” 2014.

[19] D. Takafuji, K. Nakano, and Y. Ito, “C2CU: CUDA C pro-
gram generator for bulk execution of a sequential algorithm,”
in Proc. of International Conference on Algorithms and
Architectures for Parallel Processing, pp. 178–191, 2014.

