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The PP model was introduced by Angluin at al. to model passive dis-
tributed systems, in which a collection of finite-state agents interact with
each other in order to accomplish a common task. The agents are assumed
to be identical and uniform i.e., they are not identified and all execute the
same protocol. The computations are performed through pairwise interac-
tions i.e., when two agents interact, they exchange their local information
and update their state according to a common protocol. The interaction
pattern is unpredictable i.e., the agents have no control on which agent they
will interact with.

Many investigations have considered the PP model, different problems
have been addressed as computing a function, electing a leader, counting,
coloring and naming [1, 2, 3, 4, 6, 8]. Most of these problems are concerned
with the convergence to a specific configuration that contains the answer
to the problem that is considered. These problems are hence said to be
static. Only few investigations have considered dynamic problems such as
the self-stabilizing token circulation problem on rings [4], the self-stabilizing
mutual exclusion and the group mutual exclusion problems [5] and recently
the self-stabilizing oscillation problem [7].

About the self-stabilizing oscillation problem, it has been shown that
under a deterministic scheduler, the self-stabilizing leader election (SS-LE)
and the self-stabilizing oscillation problem (SS-OSC) are equivalent [7], in
the sense that an SS-OSC protocol is constructible from a given SS-LE
protocol and vice versa, which unfortunately implies that (1) resorting to
a leader is inevitable (although we seek a decentralized solution) and (2) n
states are necessary to create an oscillation of amplitude n, where n is the
number of agents (although we seek a memory-efficient solution).

Under the probabilistic scheduler, we investigate both the self-stabilizing
synchronization problem and the self-stabilizing oscillation problem. We
then aim at designing a PP that represent any given periodic function f by
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a non empty set of populations that exhibit an oscillatory behavior.
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