
A Parallel Algorithm for LZW decompression,

with GPU implementation

Shunji Funasaka, Koji Nakano, and Yasuaki Ito

Department of Information Engineering
Hiroshima University

Kagamiyama 1-4-1, Higashihiroshima 739-8527 Japan

Abstract. The main contribution of this paper is to present a paral-
lel algorithm for LZW decompression and to implement it in a CUDA-
enabled GPU. Since sequential LZW decompression creates a dictionary
table by reading codes in a compressed file one by one, its paralleliza-
tion is not an easy task. We first present a parallel LZW decompression
algorithm on the CREW-PRAM. We then go on to present an efficient
implementation of this parallel algorithm on a GPU. The experimental
results show that our parallel LZW decompression on GeForce GTX 980
runs up to 69.4 times faster than sequential LZW decompression on a
single CPU. We also show a scenario that parallel LZW decompression
on a GPU can be used for accelerating big data applications.

Keywords: Data compression, big data, parallel algorithm, GPU, CUDA

1 Introduction

A GPU (Graphics Processing Unit) is a specialized circuit designed to accel-
erate computation for building and manipulating images [4]. Latest GPUs are
designed for general purpose computing and can perform computation in appli-
cations traditionally handled by the CPU. Hence, GPUs have recently attracted
the attention of many application developers. NVIDIA provides a parallel com-
puting architecture called CUDA (Compute Unified Device Architecture) [7],
the computing engine for NVIDIA GPUs. CUDA gives developers access to the
virtual instruction set and memory of the parallel computational elements in
NVIDIA GPUs.

There is no doubt that data compression is one of the most important tasks
in the area of computer engineering. In particular, almost all image data are
stored in files as compressed data formats. There are basically two types of
image compression methods: lossy and lossless [9]. Lossy compression can gen-
erate smaller files, but some information in original files are discarded. Hence,
decompression of lossy compressed images does not generate files identical to
the original images. On the other hand, lossless compression creates compressed
files, from which we can obtain the exactly same original files by decompression.
Hence, lossless compression can be used far more than images. In this paper, we
focus on LZW compression, which is one of the most well known patented lossless



2

compression method [11] used in Unix file compression utility “compress” and
in GIF image format. Also, LZW compression option is included in TIFF file
format standard [1], which is commonly used in the area of commercial digital
printing. However, LZW compression and decompression are hard to parallelize,
because they use dictionary tables created by reading input data one by once.
In [10], a CUDA implementation of LZW compression has been presented. But,
it achieved only a speedup factor less than 2 over the CPU implementation using
MATLAB. Also, several GPU implementations of dictionary based compression
methods have been presented [6, 8]. As far as we know, no parallel LZW de-
compression using GPUs has not been presented. In particular, decompression
may be performed more frequently than compression; each image is compressed
and written in a file once, but it is decompressed whenever the original image is
used. Hence, we can say that LZW decompression is more important than the
compression.

The main contribution of this paper is to present a parallel algorithm for
LZW decompression and the GPU implementation. We first show that a par-
allel algorithm for LZW decompression on the CREW-PRAM [2], which is a
traditional theoretical parallel computing model with a set of processors and a
shared memory. We will show that LZW decomposition of a string of m codes
can be done in O(Lmax+logm) time using max(k,m) processors on the CREW-
PRAM, where Lmax is the maximum length of characters assigned to a code.
We then go on to show an implementation of this parallel algorithm in CUDA
architecture. The experimental results using GeForce GTX 980 GPU and Intel
Xeon CPU X7460 processor show that our implementation on a GPU achieves
a speedup factor up to 69.4 over a single CPU.

Let us consider the following scenario to use LZW compression and decom-
pression. Suppose that we have a set of bulk data such as images or text stored
in a storage of a host computer with a GPU. A user gives a query to the set of
bulk data and all data must be processed to answer the query. To accelerate the
computation for the query, data are transferred to the GPU through the host
computer and they are processed by parallel computation on the GPU. For the
purpose of saving storage space and data transfer time, data are stored in the
storage as LZW compressed format. If this is the case, compressed data must
be decompressed using the host computer or using the GPU before the query
processing is performed. We will show that, since LZW decompression can be
done very fast in the GPU by our parallel algorithm, it makes sense to store
compressed data in a storage and to decompress them using the GPU.

2 LZW compression and decompression

The main purpose of this section is to review LZW compression/decompression
algorithms. Please see Section 13 in [1] for the details.

The LZW (Lempel-Ziv & Welch) [12] compression algorithm converts an
input string of characters into a string of codes using a string table that maps
strings into codes. If the input is an image, characters may be 8-bit integers. It



3

reads characters in an input string one by one and adds an entry in a string table
(or a dictionary). In the same time, it writes an output string of codes by looking
up the string table. Let X = x0x1 · · ·xn−1 be an input string of characters and
Y = y0y1 · · · ym−1 be an output string of codes. For simplicity of handling the
boundary case, we assume that an input is a string of 4 characters a, b, c, and
d. Let S be a string table, which determines a mapping of a string to a code,
where codes are non-negative integers. Initially, S(a) = 0, S(b) = 1, S(c) = 2,
and S(d) = 3. By procedure AddTable, new code is assigned to a string. For
example, if AddTable(cb) is executed after initialization of S, we have S(cb) = 4.
The LZW compression algorithm is described as follows:

[LZW compression algorithm]
1 for i← 0 to n− 1 do
2 if(Ω · xi is in S)
3 Ω ← Ω · xi;
4 else
5 Output(S(Ω)); AddTable(Ω · xi); Ω ← xi;
6 Output(S(Ω));

In this algorithm, Ω is a variable to store a string. Also, “·” denotes the con-
catenation of strings/characters.

Table 1 shows how the compression process for an input string cbcbcbcda.
First, since Ω ·x0 = c is in S, Ω ← c is performed. Next, since Ω · x1 = cb is not
in S, Output(S(c)) and AddTable(cb) are performed. More specifically, S(c) = 2
is output and we have S(cb) = 4. Also, Ω ← x1 = b is performed. It should have
no difficulty to confirm that 214630 is output by this algorithm.

Table 1. String table S, string stored in Ω, and output string Y for X = cbcbcbcda

i 0 1 2 3 4 5 6 7 8 -
xi c b c b c b c d a

Ω - c b c cb c cb cbc d a

S - cb : 4 bc : 5 - cbc : 6 - - cbcd : 7 da : 8 -
Y - 2 1 - 4 - - 6 3 0

Next, let us show LZW decompression algorithm. Let C be the code table,
the inverse of string table S. For example if S(cb) = 4 then C(4) = cb. Initially,
C(0) = a, C(1) = b, C(2) = c, and C(3) = d. Also, let C1(i) denote the first
character of code i. For example C1(4) = c if C(4) = cb. Similarly to LZW
compression, the LZW decompression algorithm reads a string Y of codes one
by one and adds an entry of a code table. In the same time, it writes a string X

of characters. The LZW decompression algorithm is described as follows:

[LZW decompression algorithm]



4

1 Output(C(y0));
2 for i← 1 to n− 1 do
3 if(yi is in C)
4 Output(C(yi)); AddTable(C(yi−1) · C1(yi));
5 else
6 Output(C(yi−1) · C1(yi−1)); AddTable(C(yi−1) · C1(yi−1));

Table 2 shows the decompression process for a code string 214630. First,
C(2) = c is output. Since y1 = 1 is in C, C(1) = b is output and AddTable(cb)
is performed. Hence, C(4) = cb holds. Next, since y2 = 4 is in C, C(4) = cb

is output and AddTable(bc) is performed. Thus, C(5) = bc holds. Since y3 = 6
is not in C, C(y2) · C1(y2) = cbc is output and AddTable(cbc) is performed.
The reader should have no difficulty to confirm that cbcbcbcda is output by this
algorithm.

Table 2. Code table C and the output string for 214630

i 0 1 2 3 4 5
yi 2 1 4 6 3 0

C - 4 : cb 5 : bc 6 : cbc 7 : cbcd 8 : da
X c b cb cbc d a

3 Parallel LZW decompression

This section shows our parallel algorithm for LZW decompression.
Again, let X = x0x1 · · ·xn−1 be a string of characters. We assume that

characters are selected from an alphabet (or a set ) with k characters α(0), α(1),
. . ., α(k − 1). We use k = 4 characters α(0) = a, α(1) = b, α(2) = c, and
α(3) = d , when we show examples as before. Let Y = y0y1 · · · ym−1 denote the
compressed string of codes obtained by the LZW compression algorithm. In the
LZW compression algorithm, each of the first m− 1 codes y0, y1, . . . , ym−2 has a
corresponding AddTable operation. Hence, the argument of code table C takes
an integer from 0 to k +m− 2.

Before showing the parallel LZW compression algorithm, we define several
notations. We define pointer table p using code table Y as follows:

p(i) =

{

NULL if 0 ≤ i ≤ k − 1
yi−k if k ≤ i ≤ k +m− 1

(1)

We can traverse pointer table p until we reach NULL . Let p0(i) = i and pj+1(i) =
p(pj(i)) for all j ≥ 0 and i. In other words, pj(i) is the code where we reach
from code i in j pointer traversing operations. Let L(i) be an integer satisfying



5

pL(i)(i) = NULL and pL(i)−1(i) 6= NULL. Also, let p∗(i) = pL(i)−1(i). Intuitively,
p∗(i) corresponds to the dead end from code i along pointers. Further, let Cl(i)
(0 ≤ i ≤ k +m− 2) be a character defined as follows:

Cl(i) =

{

α(i) if 0 ≤ i ≤ k − 1
α(p∗(i+ 1)) if k ≤ k +m− 2

(2)

It should have no difficulty to confirm that Cl(i) is the last character of C(i),
and L(i) is the length of C(i). Using Cl and p, we can define the value of C(i)
as follows:

C(i) = Cl(p
L(i)−1(i)) · Cl(p

L(i)−2(i)) · · ·Cl(p
0(i)). (3)

Table 3 shows the values of p, p∗, L, Cl, and C for Y = 214630.

Table 3. The values of p, p∗, l, Cl, and C for Y = 214630

i 0 1 2 3 4 5 6 7 8 9

p(i) NULL NULL NULL NULL 2 1 4 6 3 0
p∗(i) - - - - 2 1 2 2 3 0
L(i) 1 1 1 1 2 2 3 4 2 -
Cl(i) a b c d b c c d a -

C(i) a b c d cb bc cbc cbcd da -

We are now in a position to show parallel LZW decompression on the CREW-
PRAM. Parallel LZW decompression can be done in two steps as follows:

Step 1 Compute L, p∗, and Cl from code string Y .
Step 2 Compute X using p, Cl and L.

In Step 1, we use k processors to initialize the values of p(i), Cl(i), and L(i)
for each i (0 ≤ i ≤ k − 1). Also, we use m processors and assign one processor
to each i (k ≤ i ≤ 2k + m − 1), which is responsible for computing the values
of L(i), p∗(i), and Cl(i). The details of Step 1 of parallel LZW decompression
algorithm are spelled out as follows:

[Step 1 of the parallel LZW decompression algorithm]
1 for i← 0 to k − 1 do in parallel // Initialization
2 p(i)← NULL; L(i) = 1; Cl(i)← α(i);
3 for i← k to k +m− 1 do in parallel // Computation of L and p∗

4 p(i)← yi−k; p
∗(i)← yi−k;

5 while(p(p∗(i)) 6= NULL)
6 L(i)← L(i) + 1; p∗(i)← p(p∗(i));
7 for i← k to k +m− 2 do in parallel // Computation of Cl

8 Cl(i)← α(p∗(i + 1));

Step 2 of the parallel LZW decompression algorithm uses m threads to com-
pute C(y0) · C(y1) · · ·C(ym−1), which is equal to X = x0x1 · · ·xn−1. For this



6

purpose, we compute the prefix-sums of L(y0), L(y1), . . . , L(ym−2) using m − 1
processors. In other words, s(i) = L(y0)+L(y1)+· · ·+L(yi) is computed for every
i (0 ≤ i ≤ m−1). For simplicity, let s(−1) = 0. After that, for each i (0 ≤ i ≤ m−
1) L(yi) characters Cl(p

L(yi)−1(yi)) ·Cl(p
L(yi)−2(yi)) · · ·Cl(p

0(yi))(= C(yi)) are
copied from xs(i−1) to xs(i)−1. Note that, the values of p

0(yi), p
1(yi), . . . , p

L(i)−1(yi)
can be obtained by traversing pointers from code i. Hence, it makes sense to per-
form the copy operation from xs(i)−1 down to xs(i−1).

Table 4 shows the values of . By concatenating them, we can confirm that
X = cbcbcbcda is obtained.

Table 4. The values of L(yi), s(i), and C(yi) for Y = 214630

i 0 1 2 3 4 5
yi 2 1 4 6 3 0

L(yi) 1 1 2 3 1 1
s(i) 1 2 4 7 8 9

C(yi) c b cb cbc d a

Let us evaluate the computing time. Let Lmax = max{L(i) | 0 ≤ i ≤ k+m−
1}. The for-loop in line 1 takes O(1) time using k processors. Also, while-loop in
line 5 is repeated at most L(i) ≤ Lmax times for each i. Hence, for-loop in line 3
can be done in O(Lmax) time usingm processors. It is well known that the prefix-
sums of m numbers can be computed in O(logm) time using m processors [2].
Hence, every s(i) is computed in O(logm) time using m − 1 processors. After
that, every C(yi) with L(yi) characters is copied from xs(i)−1 down to xs(i−1) in
O(Lmax) time using m processors. Therefore, we have

Theorem 1. The LZW decomposition of a string of m codes can be done in

O(Lmax + logm) time using max(k,m) processors on the CREW-PRAM, where

k is the number of characters in an alphabet.

4 GPU implementation

The main purpose of this section is to describe a GPU implementation of our
parallel LZW decompression algorithm. We focus on the decompression of TIFF
image file compressed by LZW compression. We assume that a TIFF image file
contains a gray scale image with 8-bit depth, that is, each pixel has intensity
represented by an 8-bit unsigned integer. Since each of RGB or CMYK color
planes can be handled as a gray scale image, it is obvious to modify gray scale
TIFF image decompression for color image decompression.

As illustrated in Figure 1, a TIFF file has an image header containing mis-
cellaneous information such as ImageLength (the number of rows), ImageWidth
(the number of columns), compression method, depth of pixels, etc [1]. It also



7

has an image directory containing pointers to the actual image data. For LZW
compression, an original 8-bit gray-scale image is partitioned into strips, each
of which has one or several consecutive rows. The number of rows per strip is
stored in the image file header with tag RowsPerStrip. Each Strip is compressed
independently, and stored as the image data. The image directory has pointers
to the image data for all strips.

ImageWidth

ImageLength

RowsPerStrip

Image TIFF file

image header

image directory

image data

compressionstrip

Fig. 1. An image and TIFF image file

Next, we will show how each strip is compressed. Since every pixel has an
8-bit intensity level, we can think that an input string of an integer in the range
[0, 255]. Hence, codes from 0 to 255 are assigned to these integers. Code 256
(ClearCode) is reserved to clear the code table. Also, code 257 (EndOfInforma-
tion) is used to specify the end of the data. Thus, AddTable operations assign
codes to strings from code 258. While the entry of the code table is less than
512, codes are represented as 9-bit integer. After adding code table entry 511, we
switch to 10-bit codes. Similarly, after adding code table entry 1023 and 2037,
11-bit codes and 12-bit codes are used, respectively. As soon as code table entry
4094 is added, ClearCode is output. After that, the code table is re-initialized
and AddTable operations use codes from 258 again. The same procedure is re-
peated until all pixels in a strip are converted into codes. After the code for
the last pixel in a strip is output, EndOfInformation is written out. We can
think that a code string for a particular strip is separated by ClearCode. We
call each of them a code segment. Except the last one, each code segment has
4094− 511 + 1 = 3584 codes. The last code segment for a strip may have codes
less than that.

In our implementation, a CUDA block with 1024 threads is assigned a strip.
A CUDA block decompresses each code segment in the assigned strip one by



8

one. More specifically, a CUDA block copies a code segment of a strip stored
in the global memory to a shared memory. After that, it performs Step 1 of
the parallel LZW decompression. Tables for p, p∗, L, and Cl are created in
the shared memory. We use 16-bit unsigned short integer for each element of
the tables. Since each table has at most 4096 entries, the total size of tables is
4×4096×2 = 32Kbytes. Since the capacity of the shared memory is 48Kbytes [7],
this is possible. Since the table has 4095 entries, 1024 threads compute them in
four iterations. In each iteration, 1024 entries of the tables are computed by
1024 threads. For example, in the first iteration, L(i), p∗(i), and Cl(i) for every
i (0 ≤ i ≤ 1023) are computed. After that, these values for every i (0 ≤ i ≤ 1023)
are computed. Note that, in the second iteration, it is not necessary to execute
the while-loop in line 5 until p(p∗(i)) 6= NULL is satisfied. Once the value of
p∗(i) is less than 1024, the final resulting values of L(i) and p∗(i) are computed
using those of L(p∗(i)) and p∗(p∗(i)). Thus, we can terminate the while-loop as
soon as p∗(i) < 1024 is satisfied.

After the tables are obtained, the prefix-sums of s is computed in the shared
memory for Step 2. Finally, the strings of characters of each code are written in
the global memory. The prefix-sums can be computed by parallel algorithm for
GPUs [3, 5].

5 Experimental results

We have used GeForce GTX 980 which has 16 streaming multiprocessors with
128 processor cores each to implement parallel LZW decompression algorithm.
We also use Intel Xeon CPU X7460 (2.66GHz) to evaluate the running time of
sequential LZW decompression.

We have used three gray scale images with 4096 × 3072 pixels (Figure 2),
which are converted from JIS X 9204-2004 standard color image data. They are
stored in TIFF format with LZW compression option. We set RowsPerStrip= 16,
and so each image has 3072

16 = 192 strips with 16 × 4096 = 64k pixels each. We
invoked a CUDA kernel with 192 CUDA blocks, each of which decompresses a
strip with 64k pixels. Table 5 shows the compression ratio, that is, “original im-
age size: compressed image size.” We can see that “Graph” has high compression
ratio because it has large areas with constant intensity levels. On the other hand,
the compression ratio of “Crafts” is small because of the small details. Table 5
also shows the running time of LZW decompression using a CPU and a GPU. In
the table, T1 and T are the time for constructing tables and the total computing
time, respectively. To evaluate time T1 of sequential LZW decompression, OUT-
PUT in lines 4 and 6 are removed. Also, to evaluate time T1 of parallel LZW
decompression on the GPU, the CUDA kernel call is terminated without com-
puting the prefix-sums and writing resulting characters in the global memory.
Hence, we can think that T − T1 corresponds to the time for for generating the
original string using the tables. Clearly, sequential/parallel LZW decompression
algorithms take more time to create tables for images with small compression
ratio because they have many segments and need to create tables many times.



9

Also, the time for creating tables dominates the computing time of sequential
LZW decompression, while that for writing out characters dominates in parallel
LZW decompression. This is because the overhead of the parallel prefix-sums
computation is not small. From the table, we can see that LZW decompression
for “Flowers” using GPU is 69.4 times faster than that using CPU.

“Crafts” “Flowers” “Graph”

Fig. 2. Three gray scale image with 4096 × 3072 pixels used for experiments

Table 5. Experimental results (milliseconds) for three images

images compression sequential(CPU) parallel(GPU) Speedup
ratio T1 T − T1 T T1 T − T1 T ratio

“Crafts” 1.67 : 1 90.4 18.0 108 0.847 1.30 2.15 50.2 : 1
“Flowers” 2.34 : 1 70.9 16.6 87.5 0.541 0.719 1.26 69.4 : 1
“Graph” 38.0 : 1 27.2 19.3 46.5 0.202 1.59 1.79 26.0 : 1

Let us discuss the performance of three practical scenarios as follows:
Scenario 1: Non-compressed images are stored in the storage. They are trans-
ferred to the GPU thorough the host computer.
Scenario 2: LZW compressed images are stored in the storage. They are trans-
ferred to the host computer, and decompressed in it. After that, the resulting
non-compressed images are transferred to the GPU.
Scenario 3: LZW compressed images are stored in the storage. They are trans-
ferred to the GPU through the host computer, and decompressed in the GPU.

The throughput between the storage and the host computer depends on their
bandwidth. For simplicity, we assume that their bandwidth is the same as that
between the host computer and the GPU. Note that since the bandwidth of
the storage is not larger than that of the GPU in many cases, this assumption
does not give advantage to Scenario 3. Table 6 shows the data transfer time for
non-compressed and compressed files of the three images. Clearly, the time for
non-compressed files is almost the same, because they have the same size. On



10

the other hand, images with higher compression ratio take fewer time, because
their sizes are smaller. It also evaluates the time for three scenarios. Clearly,
Scenario 3, which uses parallel LZW decompression in the GPU, takes much
fewer time than the others.

Table 6. Estimated running time (milliseconds) of three scenarios

images compression Data Transfer Scenario 1 Scenario 2 Scenario 3
ratio non-compressed compressed

“Crafts” 1.67 : 1 3.79 2.44 7.58 110 4.59
“Flowers” 2.34 : 1 3.83 1.73 7.66 89.2 2.99
“Graph” 38.0 : 1 3.80 0.167 7.60 46.7 1.96

6 Conclusion

In this paper, we have presented a parallel LZW decompression algorithm and
implemented in the GPU. The experimental results show that, it achieves a
speedup factor up to 69.4. Also, LZW decompression in the GPU can be used
to accelerate the query processing for a lot of compressed images in the storage.

References

1. Adobe Developers Association: TIFF Revision 6.0 (June 1992),
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

2. Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University Press
(1988)

3. Harris, M., Sengupta, S., Owens, J.D.: Chapter 39. parallel prefix sum (scan) with
CUDA. In: GPU Gems 3. Addison-Wesley (2007)

4. Hwu, W.W.: GPU Computing Gems Emerald Edition. Morgan Kaufmann (2011)
5. Nakano, K.: Simple memory machine models for GPUs. In: Proc. of International

Parallel and Distributed Processing Symposium Workshops. pp. 788–797 (May
2012)

6. Nicolaisen, A.L.V.: Algorithms for Compression on GPUs. Ph.D. thesis, Tecnical
University of Denmark (Aug 2015)

7. NVIDIA Corporation: NVIDIA CUDA C programming guide version 6.5 (Aug
2014)

8. Ozsoy, A., Swany, M.: Culzss: Lzss lossless data compression on cuda. In: Proc. of
International Conference on Cluster Computing. pp. 403–411 (Sept 2011)

9. Sayood, K.: Introduction to Data Compression, Fourth Edition. Morgan Kaufmann
(2012)

10. Shyni, K., Kumar, K.V.M.: Lossless LZW data compression algorithm on CUDA.
IOSR Journal of Computer Engineering pp. 122–127 (2013)

11. Welch, T.: High speed data compression and decompression apparatus and method.
US patent 4558302 (Dec 1985)

12. Welch, T.A.: A technique for high-performance data compression. IEEE Computer
17(6), 8–19 (June 1984)


