
Listing Center Strings
under the Edit Distance Metric⋆

Hiromitsu Maji1 and Taisuke IZUMI1

Graduate School of Engineering, Nagoya Institute of Technology,
Nagoya, 466-8555, Japan.

cke17607@stn.nitech.ac.jp, t-izumi@nitech.ac.jp

Abstract. Given a set W of k strings of length n over an alphabet Σ,
the center string of W is defined as the string w such that the maximum
distance to w of all strings in W is minimized under some specified met-
ric. We present a new algorithm for the decision version of this problem
under the edit distance metric. Given a threshold parameter d, the al-
gorithm lists all the strings such that the distance from any input string
is bounded by d in O((3d(d + 2))kdk|Σ|n + Mn) time, where M is the
number of the output strings. To the best of our knowledge, this is the
first FPT algorithm for the center string under the edit distance metric
(even as a finding algorithm). By a slight modification, we also obtain
an algorithm listing length-l common subsequences of W , which runs in
O((n− l)k+1k|Σ|l +Ml) time.

1 Introduction

Finding a common structure from a given set of strings is recognized as one of the
important problems in computational biology. A center string (or equivalently,
closest string) is the one that minimizes the maximum distance of all strings
in a input set W under some specific metric. The decision version of the center
string problem under metric δ, which is the primary problem considered in this
paper, is formalized as follows:

Input: A set W of k strings of length n over an alphabet Σ, and a
threshold value d ∈ N.
Output: A string w such that δ(w,w′) ≤ d holds for any w′ ∈ W if it
exists. Otherwise the value of “FALSE”.

In the definition above, the distance metric is not concretely defined. Usually
it is chosen according to applications. Popular metrics useful in many applica-
tions are Hamming distance and edit distance. Unfortunately, for both metrics,
the center string problem is NP-complete [4], and thus we need some sort of
relaxation for attacking this problem. In this paper, we consider fixed-parameter
algorithms for the center string problem under the edit distance metric. However,
unfortunately again, that problem is W[1]-hard with respect to the number of

⋆ This work is supported in part by KAKENHI No. 15H00852 and 25289227.

input strings k [16], which implies that the problem is unlikely to have an algo-
rithm with a running time such as O(f(k)·poly(n)). The currently best algorithm
is the one by Nicolas et al. [16], which achieves O(|Σ|nk) time bound.

To circumvent the hardness results above, we focus on the fixed-parameter
tractability for parameters both d and k. That is, we explore the algorithms hav-
ing a running time with the form of O(f(d, k)·poly(n)). The primary contribution
of this paper is that such an algorithm actually exists. Our new algorithm finds a
center string in O((3d(d+2))kdk|Σ|n) time . To the best of our knowledge, this is
the first FPT algorithm for finding center string problem under the edit distance
metric. By a simple extension of this finding algorithm , we propose an algorithm
to list all the solutions in the output-sensitive manner: The algorithm lists all
the center strings for the edit distance metric in O((3d(d + 2))kdk|Σ|n + Mn)
time, where M is the number of the output strings. Since in typical scenarios the
center string problem is considered with a small d, our algorithms are practically
more useful than the previous one.

The algorithms are constructed with a new dynamic-programming strat-
egy, where the DP table records the distance information around diagonal ver-
tices in alignment graphs. Interestingly, we can utilize the same strategy to
solve another problem. Our second result is an algorithm listing length-l com-
mon subsequences of all input strings. The time complexity of this algorithm
is O((n − l)k+1|Σ|l + Ml). Note that the longest common subsequence (LCS)
problem, which is the optimization version of the length-l common subsequence
problem, is known to be NP-complete [14], and W[1]-hard for parameter k [17].
On the other hand, finding length-l common subsequences trivially allows an
O(|Σ|lpoly(n, k))-time algorithm by checking all strings of length l. That is, it
is fixed-parameter tractable for parameter l in the case of constant-size alpha-
bets. Furthermore, Irving and Fraser shows two algorithms of finding a LCS of
length at least l in O((n− l)k−1kn) and O((n− l)k−1kl + k|Σ|n) times respec-
tively [9]. That is, finding a common subsequence with length near to n is also
fixed-parameter tractable (for n − l). Our algorithm can be seen as a listing
version of the two algorithms by Irving and Fraser.

The paper is organized as follows: In Section 2, we present the prior work
related to the topics of this paper. Section 4 provides our algorithm for the center
string problem. Its extension to the LCS problem is considered in Section 5
Finally, we conclude this paper with a future direction in Section 6.

2 Related Work

The center string problem for the Hamming distance metric (often called closest
string problem) is extensively studied. In general, that problem is NP-complete [6,
11], but allows a fixed-parameter algorithm with respect to d. Following the first
FPT-algorithm by Gramm et al. [7], a number of papers improved the time
complexity [3, 13, 18]. The closest substring problem, which is a generalized ver-
sion of the closest string problem, is also well studied. Interestingly the closest
substring problem is W[1]-hard with respect to both d and k even if the alpha-

bet is binary [15]. Marx shows an efficient algorithm for computing the closest
substring for small d and/or k (but it is not an FPT algorithm) [15].

Compared to the Hamming distance metric, the center string problem under
the edit distance metric is less studied. As we stated in the introduction, the pa-
per by Nicolas and Rivals is only the one explicitly considering that setting [16].
The case of other metrics is considered in [5].

The longest common subsequence (LCS) problem for multiple strings is re-
garded as a special case of the center string for the edit distance metrics. It is
equivalent to the center string problem for the edit distance metric with sub-
stitution cost two. About exact solutions for the LCS problem, a few papers
propose several algorithms with different characteristics [8, 9]. The LCS problem
for some restricted instances is considered in [1, 2].

Another variant of the center string problem is the median string problem,
which requires to find the string minimizing the sum of the distance to each
input string. While the median string under the Hamming distance metric is
easily solvable in polynomial time, the case for edit distance is known to be
NP-complete [4], and W[1]-hard for parameter k [16].

Approximated solutions for the problems introduced above are also investi-
gated [11, 12]. PTASs are allowed for the closest (sub)string problem [12], but
the longest common subsequence problem has no polynomial-time algorithm
with any approximation ratio better than nc for some constant c > 0 unless
P = NP [10]. No polynomial-time approximated solution for the center string
problem under the edit distance metric is known so far.

3 Preliminaries

3.1 Edit Distance

We denote the alphabet by Σ. An element in Σ∗ is called string. The length of
a string w is denoted by |w|, and the i-th character of w is denoted by w[i] (1 ≤
i ≤ |w|). The operator ◦ means the concatenation of two strings (or characters).
For w ∈ Σ∗, let ta(w) be the string obtained by removing the first character of
w. That is, w = w[1] ◦ ta(w). Letting W be a set of strings, we define W ◦ x =
{w ◦ x|w ∈ W}.

The edit distance ED(w1, w2) between two strings w1 and w2 is defined as
follows:

ED(w1, w2) =


max{|w1|, |w2|}

(if |w1| = 0 ∨ |w2| = 0)
min {ED(ta(w2), ta(w1)) + c(w1[1], w2[1]),
ED(ta(w1), w2) + 1,ED(w1,w2) + 1}

(otherwise),

where c(a, b) is the function returning zero if a = b or one otherwise. Note that
while we assume that c(a, b) is uniform (i.e.,the substitution cost does not depend
on target characters), our algorithm can be applied to the case of non-uniform
cost functions (as long as it returns an integer value).

It is well-known that the computation of the edit distance between two strings
w1 and w2 can be reduced to the shortest path problem for some directed acyclic
graph G(w1, w2) = (V,E, f), called alignment graph, which defined as follows
(Fig. 1):

– V = {vi,j |i, j ∈ [0, n]}.
– For any i, j ∈ [0, n], vi,j has a directed edge to each vertex vi+1,j , vi,j+1, and

vi+1,j+1 if it exists.

– f(e) =

{
0 if e = (vi,j , vi+1,j+1) for some i, j ∈ [0, n] and w1[i] = w2[j]
1 otherwise.

An edge e = (vi,j , vi′,j′) ∈ E is called a horizontal, vertical, or diagonal edge if
i = i′, j = j′, or (i ̸= i′ ∧ j ̸= j′) holds respectively. The set of vertices {vi,j |j ∈
[0, n]} and {vi,j |i ∈ [0, n]} are called i-th row and j-th column respectively. The
distance between two vertices u and v is denoted by dist(u, v). In particular, if
u = v0,0, we omit the first argument and describe dist(u) for short. The following
theorem is a classical fact.

Theorem 1. dist(vn,n) = ED(w1, w2).

Fig. 1. Alignment graph G(w1, w2)

The band of alignment graphs is defined as the set of vertices {vi,j ||i− j| ≤
d/2}1. We also define h(j) as the intersection size of the j-th column and the
band. That is, let h(j) = min{j+ d/2, d, (n− j)+ d/2}. For ease of explanation,
we give aliases to each vertex in the band: The vertices of the j-th column in the
band are called u0,j , u1,j , . . . , uh(j),j from the upper side. The notations above
are illustrated in Fig. 2.

We have the following lemma:
1 The definition of the band depends on the value of d. Hence it may be more precise
to include that dependency in the notation (e.g., calling d-band). However, to avoid
the complication of notations, we treat the value of d as a certain kind of ”global
constant.” Actually, in the following argument, we introduce several definitions de-
pendent on d with no explicit description of the dependency.

Fig. 2. Band and vertex aliasing

Lemma 1. Given w1, w2 ∈ Σn satisfying ED(w1, w2) ≤ d, all the vertices con-
stituting the shortest path from v0,0 to vn,n in G(w1, w2) are contained in the
band.

Proof. The shortest path from vi,j to vn,n must contain at least |i − j| non-
diagonal edges, all of which have weight one. Thus its length is more than or
equal to |i− j|. Similarly, the length of the shortest path from v0,0 to vi,j is also
more than or equal to |i − j|. If |i − j| > d/2 (i.e., vi,j is out of the band), the
length of any path from v0,0 to vn,n via vi,j is more than d. It follows that vi,j
cannot be contained in the shortest path because dist(vn,n) = ED(w1, w2) ≤ d.

⊓⊔

The lemma above implies that it suffices to consider the subgraph of G(w1, w2)
induced by the band because we only care about the paths from v0,0 to vn,n
of length at most d. We denote that induced subgraph by B(w1, w2). The ter-
minologies and notations introduced for G(w1, w2) are also used for B(w1, w2).
In the following argument, we sometimes treat B(w1, w2) for some string w2 of
length less than n. So we extend the definition of B(w1, w2): For strings w1 ∈ Σn

and w2 ∈ Σm such that m < n, we define B(w1, w2) as the one in which edge
e = (vi,j , vi′,j′) for j < m has the weight according to the original function f ,
and all other edges have weight one.

4 Listing Center Strings

In this section, we propose an algorithm for the center string problem, called
ListCenter(W). The core idea of ListCenter(W) is to compute the intersection of

the k balls of radius d centered at each input string in W = {w1, w2, · · · , wk}.
Thus, before explaining the main algorithm, we first introduce a preliminary
algorithm called ListBall(w), which lists all the strings whose edit distance from w
is at most d. The main algorithm is obtained by a simple extension of ListBall(w).

4.1 Algorithm ListBall: Listing Strings within Distance d

Letting ⌈x⌉d+1 = min{d + 1, x} for short, we define the (w1, j)-profile of string
w2 as the vector (⌈dist(u0,j)⌉d+1, ⌈dist(u1,j)⌉d+1, . . . , ⌈dist(uh(j),j)⌉d+1), where
dist(ui,j) is the distance in B(w1, w2). Intuitively, the (w1, j)-profile of w2 is the
distance vector to the vertices of the j-th column in the band, but the information
about distances exceeding d are omitted. Without ambiguity, we often omit w1

and simply call j-profile.

It should be noted that any (h(j) + 1)-dimensional vector cannot become a
j-profile. we say that P ∈ [0, d + 1]h(j)+1 is possible if there exists w1, w2 ∈ Σn

such that P becomes the (w1, j)-profile of w2. We can show a necessary condition
for the possibility of P :

Lemma 2. If P = (p0, p1, . . . , ph(j)) ∈ [0, d + 1]h(j)+1 is a possible j-profile,
|pi − pi+1| ≤ 1 holds for any i ∈ [0, h(j)− 1].

Proof. Since dist(ui+1,j)−dist(ui,j) ≤ 1 obviously holds because edge (ui,j , ui+1,j)
has weight one, it suffices to show dist(ui,j) − dist(ui+1,j) ≤ 1. Let u0,0 =
x0, · · ·, xr = ui+1,j be the shortest path from u0,0 to ui+1,j in B(w1, w2), xc be
the last vertex contained in the i-th row, and dist(xc) = l (see Fig. 3). Since
xc is reachable to ui,j only traversing horizontal edges, dist(ui,j) ≤ l + (r − c)
holds. The shortest path from xc to ui+1,j can contain at most one diagonal
edge, its length is at least r− c− 1, and thus dist(ui+1,j) ≥ l+(r− c− 1) holds.
Consequently, we have dist(ui,j)− dist(ui+1,j) ≤ 1. ⊓⊔

���

length

weight
0 or 1

: shortest path
from to

Fig. 3. Proof of Lemma 2

Let Pj be the set of the sequences in [0, d+ 1]h(j)+1 satisfying the condition
of Lemma 2. Clearly Pj contains all the possible profiles. From Lemma 2, we
have the following corollary:

Corollary 1. For any j ∈ [0, n], |Pj | ≤ 3d(d+ 2).

We also have the following corollary from the definition of profiles.

Corollary 2. Any string w has 0-profile Pinit = (0, 1, 2, . . . , h(0)).

For P = (p0, p1, . . . , ph(j)) ∈ Pj and w ∈ Σn, we define Sw
P,j as the set of

length-j strings having P as its (w, j)-profile. Let Pterm = {(p0, p1, . . . , ph(n)) ∈
[0, d+1]h(n)+1|ph(n) ≤ d}. Then the union ∪P∈PtermS

w
P,n is the set of the strings

to be listed as the computation result. The core idea of ListBall(w) is to compute
Sw
P,j for any P and j via dynamic programming. To lead the DP recurrence

formula, we introduce one more notation defined as follows: Let j ∈ [0, n − 1]
and w ∈ Σn. For two vectors P = (p0, p1, . . . , ph(j)) ∈ [0, d + 1]h(j)+1 and

Q = (q0, q1, . . . , qh(j+1)) ∈ [0, d + 1]h(j+1)+1, we say that P is connected to Q

with (x,w) ∈ Σ ×Σ∗, denoted by P
w,x,j7−→ Q, if there exists a string w′ such that

w′[j+1] = x and P and Q are respectively the (w, j)-profile and (w, j+1)-profile
of w′. The key fact to obtain the recurrence formula is the next lemma:

Lemma 3. Fixing w ∈ Σn, the (j+1)-profile Q satisfying P
w,x,j7−→ Q is uniquely

determined from P and x in O(d) time.

Proof. The uniqueness of Q is obvious because any shortest path to a vertex in
the (j+1)-th column must pass a vertex in the j-th column in B(w, ∗). Thus we
prove that Q can be computed in O(d) time. In graph B(w, ∗), we can determine
the weights of all the edges between jth and (j + 1)-th columns by x. Thus we
can compute Q by calculating the distances up to d from v0,0 to the vertices
in the (j + 1)-th column, provided distances up to d to the vertices in the j-th
column. For any i′ ∈ [0, n], the predecessor of vi′,j+1 in the shortest path from
v0,0 to vi′,j+1 is either vi′−1,j , vi′,j , or vi′−1,j+1. So if the distances (up to d) to
those vertices are already known, the shortest path to vi′,j+1 (with length up
to d) can be computed in a constant time. This implies that the values of the
(j +1)-profile can be fixed from the upper side sequentially (i.e., in the order of
uj+1,0, uj+1,1, . . . , uj+1,h(j+1)). Since h(j + 1) = O(d) holds, we can compute Q
in O(d) time. The lemma is proved. ⊓⊔

This lemma implies that if we know the j-profile of a string w, we can know
the (j + 1)-profile of w ◦ x for any x ∈ Σ. Conversely, if we want to know some
(unknown) string w = w′ ◦ x having some (j + 1)-profile, it suffices to idenfity
w′ and its j-profile. This fact induces the following recurrence formula.

Sw
Q,j+1 =

∪
x∈Σ

P :P
w,x,j7−→ Q

Sw
P,j ◦ x. (1)

Now we are ready to explain the algorithm, which consists of the following
two steps:

– The first step of the algorithm is to construct the edge-labeled DAG Γ =
(VΓ , EΓ , fΓ) defined as follows:

• VΓ = (∪n
j=0{(P, j)|P ∈ Pj} ∪ {t}, where t is the special sink vertex. We

also give alias s to the vertex (Pinit , 0).
• A vertex (P, j) is connected to (Q, j + 1) by an edge with label x if

P
w,x,j7−→ Q. Note that if two or more characters x satisfy P

w,x,j7−→ Q, (P, j)
and (Q, j + 1) are connected by multiedges. Finally, we add edges from
all the vertices (P, n) satisfying P ∈ Pterm to t with the null-character
label.

– For any s-t path X = e0, e1, . . . en in Γ , we define γ(X) as the string formed
by traversing X (i.e., γ(X) = fΓ (e0)◦fΓ (e1)◦ · · · ◦fΓ (en)). The second step
of the algorithm is to output γ(X) for each s-t path X in Γ .

The correctness of this algorithm relies on the following lemma:

Lemma 4. For any (P, j) ∈ VΓ and a string w2 ∈ Σj, w2 ∈ Sw1

P,j holds if and
only if there exists a path X from s to (P, j) such that w2 = γ(X) holds.

Proof. The proof is done by induction on j. (Basis): It is obvious from Corol-
lary 2. (Induction step): Suppose as the induction hypothesis that the lemma
holds for j = j′ − 1 and consider the case of j = j′. We prove only the direction
of ⇒ because the opposite direction (⇐) is easily proved by following backward
the argument. Let w2 = w′

2 ◦ x. The recurrence formula (Eq. 1) implies that
if w2 ∈ Sw1

P,j′ , there exists a (j′ − 1)-profile P ′ such that w′
2 ∈ Sw1

P ′,j′−1 and

P ′ w,x,j′−17−→ P hold. Then, by the induction hypothesis, there exists a path X ′

from s to (P ′, j′) and w′
2 = γ(X ′). So there exists a path X to (P, j′) from s

and γ(X) = w′
2 ◦ x. The lemma is proved. ⊓⊔

We consider the running time of the algorithm. In the first step, for each
vertex (P, i), the algorithm needs to compute all the pairs (x,Q) such that

P
w,x,i7−→ Q holds. From Lemma 3, it can be computed in O(|Σ|d) time. From

Corollary 1, we also have |VΓ | = O(3ddn). Thus the total running time of the
first step is O(3d(d2|Σ|n). For the second step, all s-t paths can be enumerated
by the naive recursion after pruning the vertices from which t is unreachable. Its
running time is O(Mn + |EΓ |), where M is the number of paths enumerated.
Finally, we have the following theorem.

Theorem 2. Given w ∈ Σn, algorithm ListBall(w) lists all the strings whose
distance from w is less than or equal to d in O(3dd2|Σ|n+Mn) time.

4.2 Listing Center Strings

By extending algorithm ListBall(w), we construct the main algorithm ListCenter(W).
The primary idea is that given W = {w1, w2, . . . , w

k}, ListCenter(W) concur-
rently runs ListBall(wi) for each input wi ∈ W . We give the detailed explanation
below:

A k-tuple of profiles P = (P1, P2, . . . , Pk) ∈ Pk
j is called the (W, j)-profile of

a string w if Pi is w’s (wi, j)-profile for any i ∈ [1, k]. The notation P
W,x,j7−→ Q

for P = (P1, P2, . . . , Pk) ∈ Pk
j and Q = (Q1, Q2, . . . , Qk) ∈ Pk

j means that
there exists w ∈ Σn and j ∈ [0, n] such that P and Q are w’s (W, j)-profile and
(W, j + 1)-profile respectively and w[j] = x holds.

The remaining structure of ListCenter(W) is almost the same as ListBall(w),
but the definition of profiles and its connectivity relationship are replaced by
the ones above. More precisely, the algorithm utilizes the graph Γ k defined as
follows, instead of Γ :

– VΓ = (∪n
i=0{(P, i)|P ∈ Pk

i } ∪ {t}, where t is the special sink vertex. We also
give alias s to ((Pinit , Pinit , . . . , Pinit), 0).

– A vertex (P, i) is connected to (Q, i+1) by an edge with label x if P
W,x,i7−→ Q.

Note that if two or more characters x satisfy P
W,x,i7−→ Q, (P, i) and (Q, i+1)

are connected by multiedges. Finally, we add the edges from all the vertices
(P, n) satisfying P ∈ Pk

term to t with the null-character label.

It is not difficult to prove that the string γ(X) corresponding to a s-t path
X in Γ k has a distance at most d to each string wi ∈ W . Thus by enumerating
all s-t paths we can list all center strings. We bound the running time of this
algorithm. The analysis of the second step completely follows that for ListBall(w).
For the first step, the size of Γ k is larger than Γ . The number of vertices in Γ k is
O((3d(d+2))kn). In addition, the computation of outgoing edges for each vertex
takes obviously k times of the case for ListBall(w), i.e., O(k|Σ|d) time. Hence
the total running time of the first step is O((3d(d+ 2))kdk|Σ|n). Consequently
we have the following main theorem.

Theorem 3. Algorithm ListCenter(W) lists all center strings for W under the
edit distance metric in O((3d(d+2))kdk|Σ|n+Mn) time, where M is the number
of output strings.

5 Listing Common Subsequences

A subsequence of a string w ∈ Σn is any string obtained from w by deleting
several characters. We denote by Sub(w) the set of all subsequences of w. The
decision version of the longest common subsequence problem (LCS) is defined as
follows:

Input: A set W = {w1, w2, · · · , wk} of k strings over Σ of length n, and
a threshold value l ∈ N.
Output: A string w ∈ ∩k

i=1Sub(wi) such that |w| ≥ l if it exists. Other-
wise the value of “FALSE”.

Let l̄ = n−l for short. In this section we show an algorithm called ListLCSl(W),
which is an algorithm listing common subsequences of length l. This algorithm
is obtained by a refinement of ListCenter(W). For w1 ∈ Σn and w2 ∈ Σl, we
construct the LCS alignment graph GLCS (w1, w2) = (VLCS , ELCS) as follows:

– VLCS = {vi,j |i ∈ [0, n], j ∈ [0, l]}.
– For any i ∈ [0, n − 1] and j ∈ [0, l], add e = (vi,j , vi,j+1). In addition, add

e = (vi,j , vi+1,j+1) if w1[i] = w2[j].

(a) reachable (b) unreachable

Fig. 4. Two examples of LCS alignment graphs.

Note that LCS alignment graphs are unweighted. It is not difficult to prove
the following lemma:

Lemma 5. A string w2 is a subsequence of a string w1 if and only if v0,0 is
reachable to vn,l in GLCS (w1, w2).

Two examples of LCS alignment graphs, which correspond to reachable and
unreachable cases respectively, are shown in Fig. 4. We define the band of LCS
alignment graphs as the set of vertices {vi,j |j ≤ i ≤ j+ l̄, j ∈ [0, n]} (see Fig. 5).
The following lemma is analogous to Lemma 1 in the center-string case.

Lemma 6. Any vertex vi,j out of the band is either unreachable to v0,0 or vn,l.

Similarly as the center string case, let BLCS (w1, w2) be the subgraph of
GLCS (w1, w2) induced by the band. Now we introduce the refined definition of
profiles: The (w1, j)-profile of w2 is a binary (l̄+1)-dimensional vector represent-
ing the reachability from v0,0 to each vertex in the j-th column That is, a vertex
vi+j,j is reachable from v0,0 in BLCS (w1, w2) if and only if the (w1, j)-profile

P ∈ [0, 1]l̄+1 of w2 satisfies P [i] = 1. Since vi,j′ for j′ > j is reachable from
v0,0 when vi,j is reachable from v0,0, any possible j-profile can be represented as
the concatenation of an all-zero sequence followed by an all-one sequence. Fur-
thermore, we do not have to consider the all-zero vector as a profile. Therefore,
the total number of possible j-profiles is at most l̄. We set Pj to all possible
j-profiles.

The remaining part of algorithm ListLCSl(W) is almost the same as ListCen-
ter(W). Following the definition of profiles above, we construct the graph Γ k

and enumerate all s-t paths in Γ k. Only the difference is the design of the source
and the edges incoming to the sink in Γ k. In the context of listing common sub-
sequences, the (l̄+1)-dimensional all-one vector is the unique possible 0-profile,
and thus s is set to it. The vertices in {(P, l)|P [l̄] = 1} is adjacent to t.

By the analysis similar with Section 4, we can bound the running time of
this algorithm as follows:

Theorem 4. For any set of k strings W = {w1, w2, . . . wk}, algorithm ListLCSl(W)
enumerates all length-l common sequences in O(l̄k+1k|Σ|l+Ml) time, where M
is the number of output strings.

Fig. 5. Band of LCS alignment graphs.

6 Concluding Remarks

In this paper, we presented two algorithms called ListCenter(W) and ListLCSl(W).
Algorithm ListCenter enumerates all the center strings for given k strings and
a threshold distance d in O((3d(d + 2))kdk|Σ|n + Mn) time. In addition, this
algorithm finds one solution in O((3d(d + 2))kdk|Σ|n) time, which is the first
FPT algorithm for the center string problem under the edit distance metric.
Algorithm ListLCSl is designed with the same framework as ListCenter, which
enumerates length-l common subsequences for k strings in O(l̄k+1k|Σ|l + Ml)
time.

On the parameterized complexity of the center string problem under the
edit distance metric is surprisingly less studied. An important open problem is
to show the fixed-parameter (in)tractability with respect to d only. While the

authors conjecture W[1]-hardness of that setting, the proof is still missing. Even
if it is actually W[1]-hard, the exploration of faster algorithms (for example,
running in O(dk · poly(n) time) is also an interesting open problem.

References

1. G. Blin, P. Bonizzoni, R. Dondi, and F. Sikora. On the parameterized complexity
of the repetition free longest common subsequence problem. Inf. Process. Lett.,
112(7):272–276, 2012.

2. G. Blin, L. Bulteau, M. Jiang, P. Tejada, and S. Vialette. Hardness of longest
common subsequence for sequences with bounded run-lengths. In Proc. of 23rd
Annual Symposium on Combinatorial Pattern Matching, pages 138–148. 2012.

3. Z.-Z. Chen and L. Wang. Fast exact algorithms for the closest string and substring
problems with application to the planted (l,d)-motif model. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 8(5):1400–1410, 2011.

4. C. de la Higuera and F. Casacuberta. Topology of strings: Median string is np-
complete. Theoretical Computer Science, 230(1-2):39 – 48, 2000.

5. L. P. Dinu and A. Popa. On the closest string via rank distance. In In Proc. of
23rd Annual Symposium on Combinatorial Pattern Matching (CPM), volume 7354
of Lecture Notes in Computer Science, pages 413–426. 2012.

6. M. Frances and A. Litman. On covering problems of codes. Theory of Computing
Systems, 30(2):113–119, 1997.

7. J. Gramm, R. Niedermeier, P. Rossmanith, et al. Fixed-parameter algorithms for
closest string and related problems. Algorithmica, 37(1):25–42, 2003.

8. K. Hakata and H. Imai. The longest common subsequence problem for small
alphabet size between many strings. In Proc. of the 3rd International Symposium
on Algorithms and Computation (ISAAC), pages 469–478, 1992.

9. R. W. Irving and C. B. Fraser. Two algorithms for the longest common subsequence
of three (or more) strings. In In Proc. of 3rd Annual Symposium on Combinatorial
Pattern Matching, volume 644, pages 214–229. 1992.

10. T. Jiang and M. Li. On the approximation of shortest common supersequencesand
longest common subsequences. SIAM J. Comput., 24(5):1122–1139, oct 1995.

11. J. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selection
problems. Information and Computation, 185(1):41 – 55, 2003.

12. M. Li, B. Ma, and L. Wang. On the closest string and substring problems. J.
ACM, 49(2):157–171, 2002.

13. B. Ma and X. Sun. More efficient algorithms for closest string and substring
problems. SIAM J. Comput., 39(4):1432–1443, 2009.

14. D. Maier. The complexity of some problems on subsequences and supersequences.
J. ACM, 25(2):322–336, 1978.

15. D. Marx. Closest substring problems with small distances. SIAM J. Comput.,
38(4):1382–1410, 2008.

16. F. Nicolas and E. Rivals. Hardness results for the center and median string prob-
lems under the weighted and unweighted edit distances. Journal of Discrete Algo-
rithms, 3(2-4):390 – 415, 2005.

17. K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. Journal of Com-
puter and System Sciences, 67(4):757–771, 2003.

18. L. Wang and B. Zhu. Efficient algorithms for the closest string and distinguishing
string selection problems. In Frontiers in Algorithmics, pages 261–270. 2009.

