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Abstract. In this paper, we consider the uniform deployment problem of mobile agents in asynchronous
uniditrectional ring networks. The uniform deployment problem requires agents to uniformly spread in
finite time. In this paper, we consider the uniform deployment problem for the case that agents know
neither the number of nodes nor agents. At first we show that, when termination detection is required,
there exists no algorithm to solve the uniform deployment problem. For this reason, we consider the relaxed
uniform deployment problem that does not require termination detection, and we propose an algorithm to
solve the relaxed uniform deployment problem. This algorithm requires O(k/` log(n/`)) memory per agent,
O(n/`) time, and O(kn/`) total moves, where n is the number of nodes, k is the number of agents, and
` is the symmetry of the initial configuration (` ≥ 1). Note that both the algorithms achieve the uniform
deployment from any initial configuration, which is a striking difference from the rendezvous problem
because the rendezvous problem is not solvable from some initial configurations.
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1 Introduction

A distributed system is a system that consists of a set of computers (nodes) and communication links. Recently,
distributed systems have become large and design of distributed systems has become complicated. As a way to
design distributed systems, (mobile) agents have attracted a lot of attention [1]. Agents can traverse the system
and process tasks on each node, and hence they can simplify design of distributed systems [2].

Many fundamental problems for cooperation of mobile agents have been studied. For instance, Suzuki et
al. [3] considered a gossip problem, which requires all agents to share their information. They proposed gossip
algorithms on the assumption that agents can communicate with others staying at the same node and can use
whiteboard on each node. Another fundamental and the most investigated problem is the rendezvous problem,
which requires all agents to meet at a single node. The rendezvous problem is considered in rings [4, 5], torus
[6], trees [7], and arbitrary networks [8]. Some works assume that agents can use whiteboard on each node, and
others assume that agents can use only tokens, which are markers that agents can release on nodes. Chalopin et
al. [9] considered black hole search, which makes agents locate a particularly dangerous node called black hole.
They investigated the minimum resources (the numbers of agents and tokens) necessary for locating all links
incident to the black hole.

In this paper, we consider the uniform deployment (or uniform scattering) problem, which requires all
agents to spread uniformly. From a practical point of view, the uniform deployment is useful for the network
management. For instance, if agents that can repair faulty nodes are deployed uniformly, such agents can
quickly reach and repair faulty nodes after the faults are detected. If agents with database replicas are deployed
uniformly, each node can quickly access the database. The uniform deployment is interesting to investigate
also from a theoretical point of view. The problem exhibits a striking contrast to the rendezvous: the uniform
deployment aims to attain the symmetry of agent locations while the rendezvous aims to break the symmetry.
It is well known that the symmetry breaking is difficult (and sometimes impossible) to attain in distributed
systems. Consequently, it is interesting to clarify how easily the uniform deployment can be attained compared
to the rendezvous.

As related works, Flocchini et al. [10] and Elor et al. [11] considered the uniform deployment problem in
ring networks, while Barriere et al. [12] considered it in grid networks. All of them propose uniform deployment
algorithms under the assumption that agents are oblivious (or memoryless) but can observe multiple nodes
within its visibility range. On the other hand, Mega et al. [13] considered the uniform deployment problem for
agents that have memory but cannot observe nodes except for their currently visiting nodes. They assumed



Table 1. Results in each model

First result in [13] Second result in [13] Model 1 Model 2

Knowledge of k Available Available Not Available Not Available

Termination detection Required Required Required Not Required

Solvable / Unsolvable Solvable Solvable Unsolvable Solvable

Agent memory O(k log n) O(n) - O(k/` log(n/`))

Time complexity O(n) O(n log k) - O(n/`)

Total moves O(kn) O(kn) - O(kn/`)
n: the number of nodes, k: the number of agents, `: the symmetry of the initial configuration

agents with knowledge of the number of agents and proposed two move-optimal algorithms to solve the uni-
form deployment problem in unidirectional synchronous ring networks. In addition to the two algorithms, they
considered the trade-off between the time complexity and the memory requirement par agent.

In this paper, we consider the uniform deployment problem in unidirectional asynchronous ring networks.
Similarly to [13], we consider agents that have memory but cannot observe nodes except for their currently
visiting node. Each agent initially has a token and can release it on a visiting nodes. After a token is released at
some node, agents cannot remove such a token. Different from [13], we assume that agents have no knowledge
of the number of agents or nodes. At first we show that, when termination detection is required, there exists no
algorithm to solve the uniform deployment problem. Intuitively, it is due to impossibility of finding k or n when
the initial configuration has symmetry: when an agent misestimates these at smaller numbers than actual ones, it
prematurely terminates and the uniform deployment cannot be achieved. For this reason, we consider the relaxed
uniform deployment problem that does not require termination detection, and we propose an algorithm to solve
the relaxed uniform deployment problem. In this algorithm, each agent estimates k and n (possibly at smaller
values than actual ones) and behaves based on the estimation. Thus, the efficiency of the algorithm depends on
the estimation. To evaluate the efficiency, we introduce the following parameter ` to denote the symmetry degree
of an initial configuration: we say that an initial configuration has symmetry ` when the its distance sequence
can be represented as `-times repetition of some non-periodic sequence. For example, an asymmetric initial
configuration has symmetry 1, and the symmetry becomes larger for a higher symmetric initial configuration.
Note that agents cannot know ` but the efficiency depends on it. Using the symmetry parameter `, the efficiency
of the algorithm is denoted as follows: this algorithm requires O(k/` log(n/`)) memory per agent, O(n/`) time,
and O(kn/`) total moves. This result shows a natural but interesting property: the algorithm achieves the
uniform deployment more efficiently when the initial configuration has higher symmetry. For an asymmetric
initial configuration, this algorithm requires O(k log n) memory per agent, O(n) time, and O(kn) total moves.
However, when ` is ω(1), this algorithm requires o(k log n) memory per agent, o(n) time, and o(kn) total moves.
When ` is Ω(n), this algorithm requires O(1) memory per agent, O(1) time, and O(k) total moves.

Note that all proposed algorithms achieve the uniform deployment from any initial configuration, which is
a striking difference from the rendezvous problem because the rendezvous problem is not solvable from some
initial configurations. Due to limitation of space, we describe several proofs of lemmas and theorems in the
appendix. In Table 1, we compare our contributions with results in [13].1

2 Preliminaries

2.1 System model

A unidirectional ring network R is defined as 2-tuple R = (V, E), where V is a set of anonymous nodes (i.e,
nodes having no IDs) and E is a set of unidirectional links. We denote by n (= |V |) the number of nodes. Then,
we define V = {v0, v1, . . . , vn−1} and E = {e0, e1, . . . , en−1} (ei = (vi, v(i+1) mod n)). For simplicity, operations
to an index of a node assume calculation under modulo n, that is, v(i+1) mod n is simply represented by vi+1.
We define the direction from vi to vi+1 as the forward direction. In addition, we define the j-th (j 6= 0) forward
agent a′ of agent a as the agent that exists in the a’s forward direction and there are j − 1 agents between a
and a′. Moreover, the distance from vi to vj (0 ≤ i, j ≤ n− 1) is defined to be (j − i) mod n.

An agent is a state machine having an initial state. Let A = {a0, a1, . . . , ak−1} be a set of k (≤ n) agents. For
simplicity, operations to an index of an agent assume calculation under modulo k. Since the ring is unidirectional,
agents staying at vi can move only to vi+1. We assume that agents are anonymous (i.e., agents have no IDs). In
addition, each agent initially has a 1-bit memory called token and can release it on a node that it visits. After
a token is released at some node, agents cannot remove the token. Note that since agents are anonymous, they
cannot recognize the owner of each token. Moreover, we assume that agents can send a message of any size to
1 The model in [13] can be easily to applied to our paper.



any agent at the same node. We consider two types of agents: agents with knowledge of k and agents with no
knowledge of k or n.

Each agent executes the following five operations in an atomic action: 1) The agent reaches a node, say v
(or it starts operations at v), 2) the agent receives messages (if any), 3) the agent executes local computation
at v, 4) the agent sends a message to agents v (if any) if it decides to send a message, and 5) the agent leaves
v if it decides to move. We assume that agents move through a link in a FIFO manner, that is, when agent ap

leaves vi after agent aq leaves vi, ap reaches vi+1 after aq reaches vi+1. We consider an asynchronous system,
that is, the time for each agent to perform an operation is finite but unbounded.

A (global) configuration C is defined as a 5-tuple C = (S, T,M,P, Q). The first element S is a k-tuple
S = (s0, s1, . . . , sk−1) representing the agent states where si is the state (including the state of holding a
token or not) of ai (0 ≤ i ≤ k − 1). The second element T is an n-tuple T = (t0, t1, . . . , tn−1) denoting
the node states where ti is the state (i.e., the number of tokens) of vi (0 ≤ i ≤ n − 1). The third element
M is a k-tuple M = (m0,m1 . . .mk−1), where mi is a sequence of messages that are sent to ai and not
received by ai. The remaining elements P and Q represent the positions of agents. The element P is an n-tuple
P = (p0, p1, . . . , pn−1), where pi is a set of agents staying at node vi (0 ≤ i ≤ n − 1). The element Q is an
n-tuple Q = (q0, q1, . . . , qn−1), where qi is a sequence of agents residing in the FIFO queue corresponding to
link (vi−1, vi) (0 ≤ i ≤ n− 1). Hence, agents in qi are those in transit from vi−1 to vi.

We denote by C the set of all the possible configurations. In initial configuration C0 ∈ C, all agents are in the
initial states and placed at distinct nodes respectively, and no node has any token. In addition, in C0 the node
where agent a stays is called the home node of a and denoted by vHOME(a). We assume that in C0 agent a is
in the head of queue qi if vi is the home node of a. This assures that agent a starts the algorithm at vHOME(a)
before any other agent visits vHOME(a), that is, a is the first agent that takes an action at vHOME(a).

In addition, we define periodic rings. For initial configuration C0, we define the distance sequence of agent
ai as Di(C0) = (di

0(C0), . . . , di
k−1(C0)), where di

j(C0) is the distance from the j-th forward agent of ai to
the (j + 1)-th forward agent of ai in C0. Then, we define the distance sequence of configuration C0 as the
lexicographically minimum sequence among {Di(C0)|ai ∈ A}, and we denote it by D(C0). In addition, let
shift(D, x) = (dx, dx+1, . . . , dk−1, d0, d1, . . . , dx−1) for sequence D = (d0, d1, . . . , dk−1). Then, when D(C0) =
shift(D(C0), x) holds for some x such that 0 < x < k holds, we say the ring is periodic. Otherwise, we say the
ring is not periodic.

A schedule is an infinite sequence of agents. A schedule X = ρ1, ρ2, . . . is fair if every agent appears in X
infinitely often. An infinite sequence of configurations E = C0, C1, . . . is called an execution from C0 if there
exists a fair schedule X = ρ1, ρ2, . . . that satisfies the following conditions for each h (h > 0):

– If ρh ∈ pi holds for some i in a configuration Ch, the states of ρh and vi in Ch−1 are changed to those in Ch

by a local computation of ρh. Let aj = ρh. If mj 6= ∅, all messages in mj are delivered to aj and consumed,
that is, mj becomes ∅. In addition if ρh sends a message to some agent al at vi, the message is appended to
the tail of sequence ml. Moreover if ρh releases its token at vi, ti changes, that is, the number of tokens at
vi increments. After this if ρh decides to move to vi+1, ρh is removed from pi and is appended to the tail
of sequence qi+1. If ρh decides to stay, ρh is still in pi. The other elements in Ch−1 are the same as those in
Ch.

– If ρh is at the head of qi for some i in a configuration Ch, ρh moves to vi, that is, ρh is removed from qi.
Then, the states of ρh and vi in Ch−1 are changed to those in Ch by a local computation of ρh. If ρh sends a
message to some agent al at vi, the message is appended to the tail of sequence ml. Moreover if ρh releases
its token at vi, ti changes, that is, the number of tokens at vi increments. After this if ρh decides to move
to vi+1, ρh is appended to the tail of sequence qi+1. If ρh decides to stay, ρh is inserted in pi. The other
elements in Ch−1 are the same as those in Ch.

– Otherwise, Ch−1 is the same as Ch.

2.2 The uniform deployment problem

The uniform deployment problem requires k (≥ 2) agents to spread uniformly in the ring, that is, the distance
between any two adjacent agents should become identical like Fig. 1. Here, we say two agents are adjacent
when there exists no agent between them. However, we should consider the case that n is not a multiple of
k. In this case, we aim to distribute the agents so that the distance d of two adjacent agents should satisfy
bn/kc ≤ d ≤ dn/ke.

We consider the uniform deployment problem with termination detection and the uniform deployment problem
without termination detection. At first, we define the uniform deployment problem with termination detection.
In this case, a halt state is defined as follows: when agent ai enters a halt state, it terminates the algorithm, that
is, ai neither changes its state nor leaves the current node even if another agent sends a message to ai. Hence



Fig. 1. An example of the uniform deployment (n = 16, k = 4, d = 3)

if an agent enters a halt state, it can detect its termination. Now, we define the uniform deployment problem
with termination detection as follows.

Definition 1. An algorithm solves the uniform deployment problem with termination detection if any execution
satisfies the following conditions.

– All agents change their states to halt states in finite time.
– When all agents are in the halt states, qi = ∅ holds for any qi ∈ Q and each distance d of two adjacent

agents satisfies bn/kc ≤ d ≤ dn/ke.

Next, we define the uniform deployment problem without termination detection. In this case, a suspended
state is defined as follows: when agent ai enters a suspended state, it neither changes its state nor leaves the
current node unless another agent sends a message to ai. If ai receives a message, it can resume its behavior
and leave the current node. The uniform deployment problem without termination detection allows agents to
stop in suspended states.

Definition 2. An algorithm solves the uniform deployment problem without termination detection if any exe-
cution satisfies the following conditions.

– All agents change their states to suspended states in finite time.
– When all agents are in the suspended states, qi = ∅ holds for any qi ∈ Q and each distance d of two adjacent

agents satisfies bn/kc ≤ d ≤ dn/ke.

For the uniform deployment problem, we have the following lower bound of total moves.

Theorem 1. When k ≤ cn holds for some constant c (c < 1), a lower bound of the total moves to solve the
uniform deployment problem (with or without termination detection) is Ω(kn) even if agents have knowledge of
k.

Proof. We consider the initial configuration such that all agents stay in a quarter part of the ring like Fig. 2.
In this case, the ring is divided into four quarter parts, and in the initial configuration, all agents are in the
part a (we assume k ≤ n/4). To achieve the uniform deployment, k/4 agents need to move to the part c, the
opposite part of a, and each of them must move at least n/4 times. Thus the total number of moves is at least
(k/4)× (n/4) = kn/16. ut

Next, we evaluate the time complexity as the time required to achieve the uniform deployment. Since there
is no assumption about the period of each action of agents in asynchronous systems, it is impossible to measure
the exact time. Instead we consider the ideal time complexity, which is defined as the execution time under
the following assumptions: 1) The time required for an agent to move from a node to its neighboring node is
at most one, and 2) the time required for local computation is ignored (i.e., zero). In the following, we simply
use terms ”time complexity” and ”time” instead of ”ideal time complexity”. Then, we can show the following
theorem similarly to Theorem 1.

Theorem 2. A lower bound of the time complexity to solve the uniform deployment problem (with or without
termination detection) is Ω(n).
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Fig. 2. The initial configuration to derive a lower bound Ω(kn) of the total moves

3 Impossibility result

In this section, we consider the uniform deployment problem with termination detection. We have the following
theorem.

Theorem 3. Even when the ring is not periodic, there exists no algorithm to solve the uniform deployment
problem with termination detection.

Proof. We prove the theorem by contradiction, that is, we assume that there exists algorithm A to solve the
uniform deployment problem with termination detection.

At first, let us consider n-node ring R and the initial configuration C0 such that k agents a0, a1, . . . , ak−1

exist in this order. Let V = {v0, v1, . . . , vn−1} and assume that d = n/k is a positive integer. From hypothesis,
there is an execution ER of A to solve the uniform deployment problem in R. We define T (ER) as the length
of ER and denote ER = C0, C1, . . . , CT (ER). Note that in CT (ER), all agents are in the halt states and every
distance between two adjacent agents is d.

Next, let us consider a larger ring R′ consisting of 2qn + 2n nodes, where q is the minimum integer such
that qn ≥ T (ER) holds. Let V ′ = {v′0, v′1, . . . , v′2qn+2n−1}. We consider the initial configuration C ′0 such that
kq + k agents a′0, a

′
1, . . . a

′
kq+k−1 exist in this order in R′. Then in R′, the interval of the uniform deployment

is 2d. In addition, we define the initial position of each agent in R′ as follows. Let vf(i) be the node where
agent ai initially stays in R. We assume that f(i) < f(i + 1) holds if i 6= k − 1 and f(i) > f(i + 1) holds
otherwise. Then, we assume that agent a′i initially stays at node v′f(i mod k)+n·bi/kc. That is, the initial positions
for R are repeated from v′0 to v′qn+n−1, and there is no agent from v′qn+n to v′2qn+2n−1. For each node v′j in R′,
we define Cv(v′j) = vj mod n as the corresponding node of v′j in R. In the following, we show that each agent
a′i (0 ≤ i ≤ k − 1) behaves in the exactly same way as agent ai in R and a′i enters a halt state at the same
time as ai. Then, the distance between the two adjacent agents is d, which contradicts that the interval of the
uniform deployment in R′ is 2d.

At first, we have the following lemma. We define the local configuration of node v as the 2-tuple that consists
of the state of v and the states of all agents at v.

Lemma 1. Let us consider execution ER′ = C ′0, C
′
1, . . . , C

′
T (ER), . . . for ring R′. We define V ′

t = {v′t, v′t+1, . . . ,

v′qn+n−1}. For any t ≤ E(T ), configuration c′t satisfies the following condition: for each v′j ∈ V ′
t , the local

configuration of v′j in C ′t is the same as that of Cv(v′j) in Ct.

Proof. We prove Lemma 1 by induction on t. For t = 0, Lemma 1 holds from the definition of R′. Next, we
show that when Lemma 1 holds for t (t < T (ER)), Lemma 1 holds for t + 1.

From the hypothesis, for each v′j ∈ V ′
t+1 the local configurations of v′j−1 and v′j in C ′t are the same as those

of Cv(v′j−1) and Cv(v′j) in Ct respectively. Hence, agents at v′j−1 and v′j in C ′t behave in the exactly same way as
those at Cv(v′j−1) and Cv(v′j) in Ct. Since only agents at nodes v′j−1 and v′j can change the local configuration
of v′j in unidirectional rings, the local configuration of v′j in C ′t+1 is the same as that of Cv(v′j) in Ct+1.

Therefore, we have the lemma. ut
From Lemma 1, in C ′T (ER) local configuration of each node in V ∗ = {v′qn, v′qn+1, . . . , v

′
qn+n−1} ⊆ V ′

T (ER) is
the same as that of the corresponding node in CT (ER). Note that the set of nodes corresponding to nodes in
V ∗ is equal to V , and every agent in V ∗ also stops in the halt state in configuration C ′T (ER). Hence in C ′T (ER),
there exist k agents in the halt states in V ∗. Then, the distance between the adjacent agents in V ∗ is d, which
is a contradiction.

Therefore, we have the theorem. ut
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4 An algorithm for uniform deployment without termination detection

4.1 Proposed algorithm

In this section, we propose an algorithm to solve the uniform deployment problem without termination detection
and we show that this algorithm requires O(k/` log(n/`)) memory per agent, O(n/`) time, and O(kn/`) total
moves, where ` is the symmetry of the initial configuration. At first, we consider the case that the ring is not
periodic. After this, we show that our proposed algorithm achieves the uniform deployment also in periodic
rings.

4.1.1 Case for non-periodic rings The algorithm consists of three phases: guessing phase, patrolling phase,
and deployment phase. In the guessing phase, each agent ai moves in the ring and guesses the number of nodes.
At the end of this phase, we can show that at least one agent guesses the correct number n of nodes. In the
patrolling phase, ai moves in the ring several times depending on its guessed number of nodes. During the
movement, if ai visits the node where another agent exists, ai sends its guessed number of nodes (with some
information) to the agent. By this behavior, we can show that every agent eventually gets the correct number
n of nodes and its correct target node. In the deployment phase, ai moves to its target node and enters a
suspended state. After this, if ai receives a message and recognizes that it mistakenly guesses the number of
nodes, ai decides its new target node from the message and moves there. For simplicity we assume n = ck for
some positive integer c in the following description, and this restriction can be removed Appendx A. In addition
for sequence Y , we define Y 1 = Y and Y l+1 = Y l · Y .

Guessing phase. In the guessing phase, each agent ai firstly releases its token at its home node. After this,
ai moves in the ring and memorizes the distance dis between two adjacent token nodes. Agent ai continues such
a behavior until it completes guessing the number of nodes. Concretely, ai continues to move until it observes
the same distance sequence four times consecutively. After this, ai considers it travelled four times around the
ring and guesses the number of nodes: if ai observes the same distance sequence four times consecutively when
ai visits 4n′ nodes, ai guesses n′ as the number of nodes. For example, let us consider Fig. 3. Each number in
the figure represents the distance between two adjacent token nodes. Agent ai moves from node vj to v′j and
gets the distance sequence D = (1, 3, 1, 3, 1, 3, 1, 3) = (1, 3)4. Then, ai guesses 4 as the number of nodes. By this
behavior, we can show that 1) at least one agent guesses the correct number n of nodes, and 2) if the guessed
number n′ is not correct, n′ ≤ n/2 holds. The pseudocode is described in Algorithm 1. Variable k′ represents
the guessed number of agents (tokens) in the ring, and variable nodes represents the number of nodes ai has
ever visited.

Patrolling phase. In the patrolling phase, ai moves 8n′ times. Finishing this behavior, ai considers it
traveled twelve times around the ring from the beginning about its guessed number of nodes n′. During the
movement, ai may observe some agent ah staying at some node. In this case, ah may guess the incorrect number
of nodes and prematurely stop moving at an incorrect target node. Hence if ai observes such an agent, ai sends
n′, k′,nodes, and D to ah. By this behavior, we can show that every agent eventually gets the correct number
n of nodes and its correct target node. The pseudocode is described in Algorithm 2.

Deployment phase. In the deployment phase, agent ai selects its target node and moves there as follows.
Let D = (d0, d1, . . . , dk′−1)4 be the distance sequence ai obtained in the guessing phase, where dj is the distance
from the j-th token node it found to the (j + 1)-th token node. Note that, ai

′s home node vHOME(ai) is
considered as the 0-th token node. In addition, x be the minimum number such that shift(D, x) = Dmin holds,
where Dmin is the lexicographically minimum distance sequence among {shift(D, x)|0 ≤ x ≤ k′ − 1}. Then, ai

selects base node vbase where the agent whose distance sequence is Dmin initially stays. For example in Fig. 4
(a), we assume that each agent finishes the patrolling phase and returns to its home node. Then agents select
the node where agent a0 initially exists as a base node because a0

′s distance sequence is the lexicographically
minimum. In addition, ai considers that it is rank-th agent (0 ≤ rank ≤ k′ − 1) from vbase (the agent staying



Algorithm 1 The behavior of agent ai in the guessing phase
Behavior of Agent ai

1: /* guessing phase */
2: release a token at its home node vHOME(ai)
3: while n′ = 0 do
4: move to the next token node and get the distance dis between two token nodes
5: D [i] = dis, i = i + 1
6: if (i mod 4 = 0) ∧ (∀x (0 ≤ x ≤ i/4− 1)

D[x] = D[x + i/4] = D[x + 2× i/4] = D[x + 3× i/4]) then
7: // completing guessing the numbers of nodes and tokens
8: k′ = i/4
9: n′ = D[0] + D[1] + · · ·+ D[k′ − 1]

10: nodes = 4n′

11: end if
12: end while
13: change to the patrolling phase

Algorithm 2 The behavior of agent ai in the patrolling phase
Behavior of Agent ai

1: /* patrolling phase */
2: while nodes 6= 12n′ do
3: move to the forward node
4: nodes = nodes + 1
5: if there exists another agent ah then send (n′, k′,nodes, D[ ]) to ah

6: end while
7: change to the deployment phase

at vbase is considered as 0-th agent). Let disBase be the distance between the current node and the vbase (if
ai already stays at vbase, we assume that disBase = n′). At first, ai moves disBase times and reaches vbase.
After this, ai moves to its target node by moving rank× n/k times and enters a suspended state. In Fig. 4 (b),
each agent firstly moves to vbase, moves to its target node, and enters a suspended state. When all agents enter
suspended states, agents solve the uniform deployment problem.

However, ai may stay at an incorrect target node with incorrect guessed number of nodes. In this case,
ai eventually receives a message from another agent a`. Let n′`, k′`, nodes`, and D` be the guessed number of
nodes, the guessed number of agents, the number of nodes ever visited, and the distance sequence included
in a message from al respectively. If n′ ≤ n′`/2 holds and there exists t such that (∀i (0 ≤ i ≤ 4k′ − 1)
D[i] = D`[i + t]) ∧ (D`[0] + · · ·D`[t− 1] = nodes` − nodes) hold, it means that al guesses at least twice number
of nodes than ai and memorizes ai’s whole distance sequence D as a part of D`. Then, ai recognizes that it
mistakenly guesses the number of nodes and resumes its behavior. Concretely, ai firstly moves 12n′` − nodes
times. Note that, we show later that 12n′`−nodes is positive. Then, ai considers it traveled twelve times around
the ring from the beginning about new guessed number of nodes n′`. After this, it decides the new base node
and its new target node from n′`, k′`, nodes` and D`, moves to its new target node as mentioned before, and
enters a suspended state again. When all agents enter suspended states, agents solve the uniform deployment
problem. The pseudocode is described in Algorithm 3.

An example As an example, let us consider the ring like Fig. 5. This ring is not periodic but has some
periodic subsequence, that is, some agent observes 4-times repeated subsequence before it travels once around
the ring. In such a ring, some agent mistakenly guesses the number of nodes and enters a suspended state
at an incorrect target node. However in this case, we can show that at least one agent ai guesses the correct
number n of nodes and informs prematurely suspending agents of n during the patrolling phase. Let us consider
the behavior of agents a1 and a2. For simplicity, we assume that they behave in a synchronous manner. In
the guessing phase, agent a2 gets the distance sequence D = (1, 3, 1, 3, 1, 3, 1, 3) = (1, 3)4 and guesses 4 as
the number of nodes, which is incorrect (Fig. 5 (a) to Fig. 5 (b)). After this a2 executes the patrolling and
deployment phases, and enters a suspended state at incorrect target node v′j (Fig. 5 (b) to Fig. 5 (c)). On the
other hand, agent a1 is still in the guessing phase. When a1 observes D = (11, 1, 3, 1, 3, 1, 3, 1, 3)4, it completes
the guessing phase and guesses the correct number of nodes 27. After this in the patrolling phase, a1 observes
a2 at v′j , sends its guessed number of nodes with other information to a2 (Fig. 5 (c) to Fig. 5 (d)), and moves to
its target node. When a2 receives the message from a1, it recognizes that it mistakenly guesses the number of
nodes and resumes its behavior.

In the following, we show that every agents eventually gets the correct number n of nodes and its correct
target node. To show this, we use the following lemmas.
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Fig. 4. An example of the deployment phase (n = 12, k = 3, d = 4)

Algorithm 3 The behavior of agent ai in the deployment phase
Behavior of Agent ai

1: /* deployment phase */
2: let Dmin be the lexicographically minimum sequence among {shift(D, x)|0 ≤ x ≤ k′ − 1}
3: rank = min{x ≥ 0|shift(D, x) = Dmin}
4: disBase = D[0] + D[1] + · · ·+ D[k − 1− rank]
5: move disBase times
6: nodes = nodes + disBase
7: move rank× n/k times
8: nodes = nodes + rank× n/k
9: change its state to a suspended state

10:
11: /* behavior in the suspended state */
12: wait at the current node until ai receives (n′`, k

′
`,nodes`, D`[ ]) from some agent a`

13: if (n′ ≤ n′`/2) ∧ (there exists t such that (∀i (0 ≤ i ≤ 4k′ − 1)
D[i] = D`[i + t]) ∧ (D`[0] + · · ·D`[t− 1] = nodes` − nodes) hold) then

14: // ai recognizes that it misunderstands the number of nodes
15: n′ = n′`, k′ = k′`, D[ ] = shift(D`[ ], t)
16: move 12n′ − nodes times
17: nodes = 12n′

18: go to line 2
19: end if

Lemma 2. [14] Consider an p-length sequence A = a0, . . . , ap−1 and an p′-length sequence B = b0, . . . , bp′−1

such that p′ < p holds. If B3 is the prefix of A3, either p′ ≤ p/2 holds or B is periodic.

Lemma 3. If agent a` guesses the incorrect number of nodes n` (i.e., n` 6= n holds), n` ≤ n/2 holds.

Proof. Let k` (< k) be the number of agents (tokens) guessed by a`. Since a` observes 4k` tokens in the guessing
phase, it stores the same distance sequence (D[0], . . . , D[k` − 1]) four times, that is, (D[0], . . . , D[4k` − 1]) =
(D[0], . . . , D[k` − 1])4 holds. Then, n` = D[0] + · · · + D[k` − 1] holds. On the other hand since the number of
tokens in the ring is k > k`, sequence (D[0], . . . , D[k` − 1])4 is the prefix of (D[0], . . . , D[k − 1])4. Note that,
n = D[0] + · · · + D[k − 1] holds. Then from Lemma 2, (D[0], . . . , D[k` − 1]) is periodic or k` ≤ k/2 holds. If
D([0], . . . , D[k` − 1]) is periodic, there exists k′` < k` such that (D[0], . . . , D[4k′` − 1]) = (D[0], . . . , D[k′` − 1])4

holds. This is a contradiction because a` should guess n` as the number of nodes. Hence, k` ≤ k/2 holds.
Then since (D[0], . . . , D[k` − 1]) is the prefix of (D[0], . . . , D[k − 1]), (D[0], . . . , D[k − 1]) = (D[0], . . . , D[k` −
1], D[0], . . . , D[k` − 1], D[2k`], D[2k` + 1], . . .) holds. Thus, (D[0] + · · ·+ D[k` − 1]) ≤ (D[0] + · · ·+ D[k − 1])/2
holds, that is, n` ≤ n/2 holds. Therefore, we have the lemma. ut

Then, we have the following lemmas.

Lemma 4. If ring R is not periodic, at least one agent guesses the correct number n of nodes and gets distance
sequence D of the initial configuration in R.

Proof. We show that at least one agent guesses the correct number n of nodes. Then from Algorithm 1 and
3, the agent clearly gets the distance sequence D for the initial concifgration in R. We prove the lemma by
contradiction, that is, we assume that the number of nodes guessed by each agent is less than n. Without loss
of generality, we assume that in the initial configuration agents a0, a1, . . . , ak−1 exist in this order. We define
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Fig. 5. An example in the ring having some periodic subsequence (n = 27, k = 9, d = 3)

ni as the number of nodes guessed by ai and Di as the distance sequence observed by ai. In addition, let Si be
the distance sequence such that Di = S4

i holds.
Let am be the agent that guesses the maximum number of nodes nm (< n) among all agents, and let

` = |Sm| (< k). We assume that the distance sequence am observes in Algorithm 1 is Dm=(dm
0 , . . . , dm

`−1, d
m
` , . . .

, dm
2`−1, d

m
2`, . . . , lm3`−1, l

m
3`, . . . dm

4`−1)=(dm
0 , . . . , dm

`−1)
4 = S4

m. Note that, Sm = (dm
0 , . . . , dm

`−1) is not periodic and
∀j (0 ≤ j ≤ `− 1) dm

j = dm
j+` = dm

j+2` = dm
j+3` holds.

Next, let us consider the agent am+`. Then, either nm+` < nm or nm+` = nm holds because nm is the
maximum. We show that nm+` = nm always holds by contradiction, that is, we assume that nm+` < nm

holds. Then, |Sm+`| < |Sm| clearly holds. Consequently, S3
m+` is the prefix of S3

m because am+` gets the
distance sequence (dm

` , . . . , dm
2`−1) = Sm when it observes ` tokens. Then from Lemma 2, either |Sm+`| ≤ |Sm|/2

holds or Sm+` is periodic. If |Sm+`| ≤ |Sm|/2 holds, agent am observes S4
m+` before observing S4

m because
(dm

0 , . . . , dm
2`−1) = (dm

` , . . . , dm
3`−1) contains S4

m+` as its prefix. Consequently, am guesses nm+` < nm as the
number of nodes, which is a contradiction. If Sm+` is periodic, Sm+` = (S′m+`)

t holds for some distance
sequence S′m+` and some positive integer t (S′m+` is not periodic and |S′m+`| ≤ |Sm+`|/2 holds). Hence, am

observes (S′m+`)
4 before observing S4

m and the number of nodes am guesses is less than nm, which is also a
contradiction. Therefore, nm+` = nm holds.

Let m(i) = m + i` and Am = {am(i)| i ≥ 0}. As mentioned above, nm = nm+` and Sm(0) = Sm(1) = Sm

hold. In addition, am(1) observes the same distance sequence of length 4|Sm| as am(0). Hence recursively, am(i+1)

observes the same distance sequence of length 4|Sm| as am(i) and consequently each agent in Am observes Sm

as the first ` consecutive distances. When k is divided by `, since every agent am(i) observes Sm as the first `
consecutive distances and ` < k holds, the ring is periodic, which is a contradiction. In the following, we consider
the case that k is not divided by ` and show that Sm(0)(= Sm) is periodic in this case. When k is not divided
by `, k = α` + β (0 < β < `) holds for some integers α and β. Let m(α) = m + α`. Then, the prefix of Sm(0)

is identical to the suffix of Sm(α) because the trajectories of am(0) and am(α) include the same part of the ring.
We assume that t elements are overlapped, that is, (dm(0)

0 , . . . , d
m(0)
t−1 ) = (dm(α)

`−t , . . . , d
m(α)
`−1 ) holds. In addition

since Sm(0) = Sm(α) holds, (dm(0)
0 , . . . , d

m(0)
`−1 ) = (dm(α)

0 , . . . , d
m(α)
`−1 ) holds. If t > `/2 holds, (dm(0)

t , . . . , d
m(0)
`−1 ) =

(dm(α)
0 , . . . , d

m(α)
`−t−1) holds. Hence, shift(Sm(0), t) = Sm(α) = Sm(0) holds. If t ≤ `/2 holds, (dm(0)

`−t , . . . , d
m(0)
`−1 ) =

(dm(α)
`−t , . . . , d

m(α)
`−1 ) = (dm(0)

0 , . . . , d
m(0)
t−1 ) = (dm(α)

0 , . . . , d
m(α)
t−1 ) and (dm(0)

t , . . . , d
m(0)
`−t−1) = (dm(α)

t , . . . , d
m(α)
`−t−1) hold.

Thus, (dm(0)
t , . . . , d

m(0)
`−1 ) = (dm(α)

0 , . . . , d
m(α)
`−t−1) holds. Consequently, shift(Sm(0), t) = Sm(α) = Sm(0) holds.

Therefore, Sm(0) is periodic since 0 < t < ` holds. However, this contradicts the assumption that Sm(0) (= Sm)
is not periodic.

Therefore, we have the lemma. ut
Lemma 5. If ring R is not periodic, every agent eventually gets the correct number n of nodes and distance
sequence D of the initial configuration in R.

Proof. We show that all agents eventually get the correct number n of nodes. Then from Algorithms 1 to
3, all agents can clearly get distance sequence D of the initial configuration in R. We prove the lemma by
contradiction, that is, we assume that when all agents are in the suspended states, there exists at least one
agent ah whose guessed number of nodes n′ is less than n. Then from Lemma 3, n′ ≤ n/2 holds. On the other
hand from Lemma 4, at least one agent ac guesses the correct number n of nodes. In the following we show that
ac observes ah during the patrolling phase and sends its guessed number of nodes n to ah, which contradicts
the assumption of n′ < n.



At first, let us consider the number of nodes ah visits. Let n1 be the number of nodes ah guesses in the
guessing phase. From Algorithms 1 to 3, ah moves at most 14n1 times by the time ah enters a suspended state
for the first time. After this, we assume that ah receives messages and updates its guessed number of nodes
to n2, n3, . . . , nl = n′ in this order. When ah updates it guessed number of node to n2, ah’s total moves at
that point (i.e, nodes) is at most 7n2 since n1 ≤ n2/2 holds. Hence, 12n2 − nodes is clearly positive. Then, ah

firstly moves in the ring until its total moves becomes 12n2 by moving 12n2−nodes times. After this, ah moves
to a new target node and enters a suspended state again. This requires at most 14n2 total moves. Then since
n3 ≤ n2/2 holds from Algorithm 3, nodes is at most 7n3 and 12n3 − nodes is clearly positive. Thus recursively,
we can show that 12ni − nodes is always positive (2 ≤ i ≤ l) and ah’s total moves unless it does not get the
correct number n of nodes is at most 14n′ ≤ 7n. On the other hand, agent ac moves 8n times in the patrolling
phase. Thus, ac clearly observes ah during the patrolling phase and sends its guessed number n of nodes to ah,
which is a contradiction.

Therefore, we have the lemma. ut
Finally, we have the following lemma.

Lemma 6. When ring R is not periodic, agents solve the uniform deployment problem without termination
detection.

Proof. From Lemma 5, all agents eventually get the corect number n of nodes and distance sequence D for the
initital configuration in R. Then, each agent can compute its correct target node from D and move there. Thus,
we have the lemma. ut

4.1.2 Case for periodic rings Next, let us consider the case that the ring is periodic. Let R′ be a periodic ring
and D′ be the distance sequence of the initial configuration in R′. We say R′ is a (N, `)-node ring if there exists
a non-periodic distance sequence D such that D′ = D` holds and the total sum of elements of D is N . Then,
n = N` holds and ` is equivalent to the symmetry of the initial configuration in R′. We call the ring R with the
distance sequence D the fundamental ring of R′ (e.g. Fig. 6). Note that a non-periodic ring can be denoted by
a (n, 1)-node ring. In addition for each agent ai in R, there exist ` agents in R′ such that the distance sequence
of each agent is `-times repetition of the distance sequence of ai. We say such agents in R′ are corresponding
agents of agent ai in R and denote by aj

i (0 ≤ j ≤ `− 1). We assume that agents a0
i , a

1
i , . . . , a

`−1
i are deployed

in this order and operations to an above index of aj
i assume calculation under modulo `. Then, the distance

from aj
i to aj+1

i is N . In this case, all agents eventually guess the incorrect number N = n/` of nodes, but we
can show that agents can solve the uniform deployment problem similarly to in R. Concretely from Algorithms
in Section 4.1, each agent moves to its target node after considering, based on the guessed number N of nodes,
it traveled twelve times around the ring. This means that each agent stays at its target node during its twelfth
or thirteenth circulations in the ring of the guessed size N , which guarantees that when all agents are in the
suspended states, no agents stay at the same node and they can achieve the uniform deployment. For example,
let us consider rings in Fig. 6. Ring R′ is the (6,2)-node periodic ring and R is the fundamental ring of R′. In
R, each agent guesses the correct number 6 of nodes in the guessing phase and moves to its correct target node
(Fig. 6 (a)). On the other hand in R′, each agent also guesses the number 6 of nodes, which is incorrect (Fig. 6
(b)). By Algorithms 1 to 3, each agent moves to its target node after considering, based on the guessed size 6, it
travelled twelve times around the ring, that is, after each agent moves 72 times (actually, each agent travelled
six times around ring R′). This guarantees that when all agents are in the suspended states, no agents stay at
the same node and they can achieve the uniform deployment (Fig. 6 (c)).

Now, we have the following lemmas, which can be proved similarly to the case of non-periodic rings.

Lemma 7. Let R′ be a (N, `)-node periodic ring and R be the fundamental ring of R′. Let ai in R be the agent
guessing the number N of nodes in the guessing phase. Then in R′, agent aj

i (0 ≤ j ≤ ` − 1) corresponding to
ai also guesses the number N of nodes.

Proof. From the definition of R′, aj
i observes the same distance sequence as that of ai. In addition since agents

have no knowledge of k or n, agents determine their guessed number of nodes depending only on the distance
sequence they observe. Thus, aj

i guesses the same number of nodes as that of ai. ut
Lemma 8. Let R′ be a (N, `)-node periodic ring and R be the fundamental ring of R′. Then in R′, every agent
eventually gets the number N of nodes and distance sequence D of the initial configuration in R.

Proof. We show that all agents eventually get the number n of nodes. Then from Algorithms 1 to 3, all agents
can clearly get distance sequence D of the initial configuration in R. We prove the lemma by contradiction, that
is, we assume that when all agents are in the suspended states, there exists at least one agent ah whose guessed
number of nodes n′ is less than N . On the other hand from Lemma 7, there exists agent aj

c (0 ≤ j ≤ ` − 1)
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guessing the number N of nodes in the guessing phase. Let Ac = {a0
c , a

1
c . . . , a`−1

c }. In the following, we show
that some agent in Ac observes ah during the patrolling phase and sends its guessed number N of nodes to ah,
which contradicts the assumption of n′ < N .

At first, let us consider the number of nodes ah visits. Similarly to the case for non-periodic rings, when ah

updates its guessed number of nodes from n′′ to n′, it firstly moves in the ring until its total moves becomes
12n′ by moving 12n′ − nodes times. After this, ah moves to a new target node and enters a suspended state
again. This requires at most 14n′ total moves. Hence unless ah does not get the number n of nodes, its total
moves is at most 14n′ ≤ 7N .

On the other hand from Lemma 7, there exists agent aj
c in Ac such that it guesses N as the number of nodes

and the distance from vHOME(aj
c) to vHOME(ah) is less than N . Remind that, vHOME(a) is the home node of

agent a. Then, let us consider the behavior of agent aj−4
c . Agent aj−4

c firstly moves 4N times and finishes the
guessing phase at node vHOME(aj

c). After this, aj−4
c moves 8N times from vHOME(aj

c) in the patrolling phase. On
the other hand, ah moves at most 7N times from vHOME(ah). Since the distance from vHOME(aj

c) to vHOME(ah)
is less than N , aj−4

c observes ah during the patrolling phase and sends the number N of nodes to ah, which is
a contradiction.

Therefore, we have the lemma. ut
Lemma 9. Even when ring R′ is periodic, agents solve the uniform deployment problem without termination
detection.

Proof. From Lemma 8, all agents eventually get the number N of nodes and distance sequence D of the initial
configuration in R, where R is the fundamental ring of R′. From Algorithm 3 when agent aj

i gets the number N

of nodes it firstly moves in the ring until its total moves becomes 12N . Then, aj
i is at vHOME(aj+12

i ). After this,
aj

i computes its target node from D and moves there, which requries at most 2N moves. Hence, aj
i eventually

stays between vHOME(aj+12
i ) and vHOME(aj+14

i ). This mean that letting vbase (resp., v′base) be the base node
exsiting between vHOME(aj+12

i ) and vHOME(aj+13
i ) (resp., vHOME(aj+13

i ) and vHOME(aj+14
i )) aj

i eventually stays
between vbase and v′base. Moerover, it crarly holds total moves of each of aj

i (0 ≤ j ≤ `− 1) are the same. Thus
when all agents are in the supended states, no agents stay at the same node and agents can achive the uniform
deployment.

Therefore, we have the lemma. ut
Finally, we have the following theorem for (N, `)-node rings.

Theorem 4. For agents with no knowledge of k or n, the proposed algorithm solves the uniform deployment
problem without termination detection. This algorithm requires O(k/` log(n/`)) memory per agent, O(n/`) time,
and O(kn/`) total moves.

Proof. From Lemmas 6 and 9, agents solve the uniform deployment problem. In the following, we analyze
complexity measures.

At first, we evaluate the memory requirement per agent. Each agent eventually gets the distance sequence
D = (d0, d1, . . . , d(4k/`)−1). Since each di is at most n/`, this sequence requires O(k/` log(n/`)) memory. More-
over, the other variables require O(log(n/`)) bit memory. Therefore, the memory requirement per agent is
O(k/` log(n/`)).

Next, we analyze the time complexity. Let Acorrect be the set of agents that guess the number n/` (= N)
of nodes in the guessing phase. Each agent ac ∈ Acorrect moves its correct target node without stopping on



the way, which requires at most 14n/` unit times. In addition from the proof of Lemmas 5 and 8, each agent
ah /∈ Acorrect gets the number n/` of nodes within 12n/` unit times. After this, ah requires at most 14n/` unit
times to moves to its correct target node. Thus, the time complexity is O(n/`).

At last, we analyze the total number of agent moves. Each agentrequires at most 14n/` moves to move to
its target node. Thus, the total number of agent moves is O(kn/`). ut

5 Conclusion

In this paper, we considered the uniform deployment problem of mobile agents in asynchronous unidirectional
ring networks. At first we showed that, when termination detection is required, there exists no algorithm
to solve the uniform deployment problem. Next, we proposed an algorithm to solve the uniform deployment
problem without termination detection in non-periodic rings. This algorithm requires O(k/` log(n/`)) memory
per agent, O(n/`) time, and O(kn/`) total moves. As a future work, we want to consider the lower bound of
memory requirement per agent. We conjecture that it is Ω(log n), and if the conjecture is correct, we can show
that the first algorithm is asymptotically optimal in terms of memory requirement.
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Appendix

A The uniform deployment for the case of n 6= ck

To remove the restriction of n = ck imposed in Section 4.1, only the parts for determining the target nodes and
for moving to a target node should be modified. In the case that n is not a multiple of k, the distance between
some adjacent target nodes should be dn/ke or bn/kc.

The target nodes should be determined by each agent so that the decisions of different agents should be
identical. Since all the agents recognize the same nodes as the base nodes, the common target nodes can be
determined using the base node as a reference node: Let b be the number of the base nodes, and r = n mod k.
The distance of every pair of adjacent base nodes is identical even in the case of n 6= ck, and is n/b =
(bn/kc× k + r)/b = bn/kc× k/b + r/b (notice that k/b and r/b are integers). This implies that we should select
k/b − 1 target nodes between two adjacent base nodes so that the first r/b intervals between adjacent target
nodes should be dn/ke and others should be bn/kc. With considering the above, each agent can determine its
own target node by local computation so that all the agents can spread over the ring to achieve the uniform
deployment.


