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Abstract—The Conway’s Game of Life is the most well-known
cellular automaton. The universe of the Game of Life is a
2-dimensional array of cells, each of which takes two possible
states, alive or dead. The state of every cell is repeatedly updated
according to those of eight neighbors. A cell will be alive if
exactly three neighbors are alive, or if it is alive and two or
three neighbors are alive. The main contribution of this paper
is to develop several acceleration techniques for simulating the
Game of Life. The key techniques for the simulation is to store
a block of cells in registers of 32 threads in a warp of a CUDA
block and to perform multiple-step simulation. We use a warp
shuffle instruction, which allows us to exchange data stored in
registers of threads in a warp, to transfer the current states stored
in registers of other threads necessary to compute the next states.
Further, since multiple-step simulation is performed, the number
of CUDA kernel calls can be decreased. The experimental results
show that, the best configuration of our GPU implementation can
perform 1024-step simulation of 16384 × 16384 cells in 0.163
seconds on GeForce GTX TITAN X GPU. The best sequential
algorithm using Intel Xeon X7460 CPU runs 58.3 seconds. Hence,
our best GPU implementation has achieved a speed-up factor of
357 over the CPU implementation.

I. INTRODUCTION

The GPU (Graphics Processing Unit) is a specialized
circuit designed to accelerate computation for building and
manipulating images [1]–[4]. Latest GPUs are designed for
general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application de-
velopers [1], [5]–[7]. NVIDIA provides a parallel computing
architecture called CUDA (Compute Unified Device Archi-
tecture) [8], [9], the computing engine for NVIDIA GPUs.
CUDA gives developers access to the virtual instruction set
and memory of the parallel computational elements in NVIDIA
GPUs. In many cases, GPUs are more efficient than multicore
processors [10], since they have thousands of processor cores
and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs:
the shared memory and the global memory [8]. The shared
memory is an extremely fast on-chip memory with lower
capacity, say, 16-96 Kbytes. The global memory is imple-
mented as an off-chip DRAM, and thus, it has large capacity,
say, 1.5-12 Gbytes, but its access latency is very long. The
efficient usage of the shared memory and the global memory
is a key for CUDA developers to accelerate applications using
GPUs. In particular, we need to consider bank conflicts of the
shared memory access and coalescing of the global memory
access [9]–[11].The address space of the shared memory is

mapped into several physical memory banks. If two or more
threads access the same memory banks at the same time, the
access requests are processed in turn. Hence, to maximize the
shared memory access performance, threads of CUDA should
access distinct memory banks to avoid the bank conflicts of
the memory accesses. To maximize the throughput between
the GPU and the DRAM chips, the consecutive addresses
of the global memory must be accessed at the same time.
Thus, CUDA threads should perform coalesced access when
they access the global memory. Also, the latency of the
global memory access is several hundred clock cycles, while
that of the shared memory access is around 10 clock cy-
cles [12]. Hence, we should minimize the memory access to the
global memory to maximize the performance. Further, CUDA-
enabled GPUs with Kepler [13] and Maxwell [14] architectures
support warp shuffle instructions that directly exchanges data
stored in registers of threads in the same warp [8]. It is
faster than inter-thread communication by reading/writing the
shared memory, Thus, we should use warp shuffle instructions
whenever possible. Actually, it has been presented that warp
shuffle instructions can accelerate the computation [15], [16].

The Conway’s Game of Life was created John Horton
Conway, a mathematician at Gonville and Caius College of the
University of Cambridge [17], [18]. The universe of the Game
of Life is an 2-dimensional array of cells, each of which takes
one of two states, 1 (alive) and 0 (dead). The state of every
cell is updated by the current states of the eight neighbors as
follows:

1) (die) An alive cell becomes dead if it has fewer than
two or more than three alive neighbors.

2) (born) A dead cell becomes alive if it has three alive
neighbors.

3) (keep alive) An alive cell keeps alive if it has two or
three alive neighbors.

4) (keep dead) A dead cell keeps dead if it has fewer
than three or more than three neighbors.

Figure 1 illustrates the rules of the Game of Life. Originally
the Conway’s Game of Life assumes that the size of the
2-dimensional array is infinite. However, to store all the states
in the memory, we assume that the universe is finite and
the 2-dimensional array has

√
n ×

√
n cells. Clearly, some

neighbors of cells in the boundary of the 2-dimensional array
do not exist. Sometimes, it is assumed that the states of
such non-existent neighbors are always dead. In this paper,
we assume that the 2-dimensional array is wrapper around to
handle the boundary case. For example, the left neighbor of a
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Fig. 1. The rules of the Game of Life

cell in the leftmost column is the rightmost cell in the same
row.

It is easy to write a program for simulating the Game
of Life if the state of a cell is stored in a word of data
such as an 8-bit character and a 32-bit integer. However, for
accelerating the simulation, it makes sense to use bit-per-cell
arrangement [19] in which the state of a cell is stored as a
bit of a word. For example, a 32-bit integer is used to store
the states of 32 cells. A very sophisticated way to compute
the next states of cells stored in a word by bitwise operations
has been presented [20]. Also, the simulation of the Game of
Life can be done by stencil codes, a class of kernels updating
elements in an array according to some fixed pattern, called
stencil. Hence, it is easy to implement the simulation using
a framework of stencil computation. For example, it can be
implemented on GPUs with few codes using stencil operations
of MATLAB [21].

We are interested in how we can accelerate the simulation
of the Game of Life using CUDA-enabled GPUs. However,
as far as we know, there is no published technical paper
aiming to accelerate the simulation. Very few papers presented
GPU implementations of the simulation [22], [23], but their
implementations are straightforward and did not aim to ac-
celerate the simulation. On the other hand, there are a lot
of web sites that present GPU implementations of the Game
of Life. For example, bitwise logical operations for the bit-
per-cell arrangement are used to compute the next states of
cells [19]. Our implementations use the same technique. In
addition, we developed a multiple-step simulation technique,
which reduces memory access to the global memory. Also,
we store the states of cells in registers of threads, and data
transfer between registers is performed by a warp shuffle
instruction. Using this techniques, we have obtained extremely
fast GPU implementation for simulating the Game of Life
using GPUs. For simulating the Game of Life with more than
1,000,000,000 cells, the best GPU implementation in [19]
achieved 2.47×1010 updates per second on GeForce GTX 480
GPU. Our implementation performs 1024-step simulation of
the Game of Life with 228 cells in 0.163 seconds on GeForce
GTX TITAN X GPU. Hence, it achieves 1.69× 1012 updates
per second and more than 68 times faster than the previously
published implementation. GeForce GTX 480 and GTX TI-

TAN X have 480 and 3072 processor cores running 1401MHz
and 1000MHz, respectively. Thus, our implementation is much
more efficient even if the difference of computing power of
GPUs is taking into account.

This paper is organized as follows. In Section II, we first
briefly explain the GPU architecture and CUDA programming
model to understand GPU implementations of the Game of
Life. Section III defines the Game of Life formally, and Sec-
tion IV shows basic techniques to accelerate the simulation of
the Game of Life including bit-per-cell arrangement and simu-
lation using bitwise logical operations. Section IV also shows a
straightforward implementation using the basic techniques on
GPUs using the global memory. In Section V, we presents our
new techniques for accelerating the simulation. We show that
we can reduce the total number of bitwise operations if each
thread computes the next states of cells in two words at the
same time. We also present an idea of multiple-step simulation,
which copies the states of cells to the shared memory and
repeats the simulation several times. For further acceleration,
we can store the states in registers of threads for multiple-step
simulation, and the simulation can be performed by a warp
shuffle instruction. Finally, Section VI shows experimental
results. More specifically, we have implemented simulation
algorithms of the Game of Life on the CPU and the GPU,
and evaluated the running time. The experimental results show
that our implementation is 357 times faster The experimental
results show that our implementation is 357 times faster than
the CPU implementation. Section VII concludes our work.

II. GPU ARCHITECTURE AND CUDA PROGRAMMING
MODEL

This section briefly describes the GPU architecture and
the CUDA programming model necessary to understand GPU
implementations of the Game of Life. Please see [8] for the
details.

Figure 2 (1) illustrates an architecture of CUDA-enabled
GPUs. A GPU is a single-chip processor equipped with
multiple Streaming Multiprocessors (SMs), each of which has
processor cores, the shared memory and the register file.
The GPU processor is connected to an off-chip memory. For
example, GeForce GTX TITAN X has 16 SMs1 with 192
processor cores, a 96Kbyte shared memory, and a register file
with 64K 32bit registers each. The off-chip memory can be
accessed by all processor cores in all SMs, while the shared
memory can be accessed only by processor cores in the same
SM. Also, registers in a register file are assigned to a processor
core, and they can be accessed only by the assigned processor
core. The off-chip memory is quite large, say 12G bytes, but
the memory access latency is quite large, say several hundred
clock cycles. The memory access latency of the shared memory
is around 10 [12] and that of registers in the register file
is smaller. Hence, to accelerate the computation, we should
minimize the global memory access. We should also use
registers whenever possible.

When we develop programs running on GPUs, we can use
CUDA programming model to support scalability. We assume
that CUDA Compute Capability 5.2, which is available for

1Since the architecture of GeForce GTX TITAN X is Maxwell, its SM is
particularly termed Maxwell Streaming Multiprocessor (SMM).
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Fig. 2. GPU architecture and CUDA programming model

GeForce GTX TITAN X [24]. Usually, a CUDA program
executed on the host computer invokes CUDA kernels one
or more times. A CUDA kernel executes one or more CUDA
blocks running on SMs of the GPU. CUDA blocks in a CUDA
kernel are identical in the sense that they have the same number
of threads executing the same program. Each CUDA block can
have up to 1024 threads, and is dispatched to one of the SM
of the GPU. Since the number of CUDA blocks can be more
than the number of SMs in a single GPU, they are dispatched
to SMs in turn. Also, it is possible that two or more CUDA
blocks are executed in a single SM at the same time. Each
SM can handle up to 32 CUDA blocks with total of 2048
threads at the same time. Since each SM has 128 processor
cores, at most 128 threads among them can be active and work
in parallel. In other words, each SM can have up to 2048
resident threads and 128 of them can be active on processor
cores. A CUDA block can use the shared memory, which can
be access by all threads in it. The shared memory of a CUDA
block is implemented in the shared memory of the SM. Hence,
its capacity is up to 96K bytes for CUDA compute capability
5.2 [8], and two ore more CUDA blocks can be arranged in the
SM at the same time only if the total shared memory capacity
is no more 64K bytes. All threads in all CUDA blocks can
access the global memory, which is arranged in the off-chip
memory (DRAM) of the GPU. Note that after all threads in a
CUDA block terminates, data stored in the shared memory are
lost, because the shared memory in an SM may be used for
another CUDA block. If data stored in the shared memory must
be referred later, they must be copied to the global memory
on developer’s own responsibility.

Threads in a CUDA block are partitioned into groups
of 32 threads each called warps. It is guaranteed that 32
threads in the same warp execute the same instruction at
the same time. Hence, if a CUDA block has at most 32

threads, they are executed synchronously. However, threads
in different warps may not be executed at the same time.
All threads in a CUDA block can call __syncthreads()
for barrier synchronization if necessary. However the cost is
__syncthreads() is not negligibly small. Hence, it makes
sense to use a CUDA block with 32 threads for avoiding barrier
synchronization using __syncthreads(), if we need to
synchronize all threads in a CUDA block frequently. Also, to
synchronize all threads in all CUDA blocks, we need to use
separate CUDA kernel calls, because SMs in the GPU executes
CUDA blocks in turn. The synchronization of all CUDA blocks
are very costly, and we should minimize it.

Efficient usage of the global memory and the shared mem-
ory is a key for CUDA developers to accelerate applications
using GPUs. To maximize the throughput between the GPU
and the off-chip memory, the consecutive addresses of the
global memory must be accessed at the same time. Hence,
threads in a CUDA block should perform coalesced access
when they access the global memory. Since the shared memory
consists of 32 memory banks, memory access by 32 threads in
a warp must be destined for distinct memory banks. In other
words, bank conflicts by a warp should be avoided to maximize
the shared memory access performance.

The communication between threads can be done through
the global memory or the shared memory. Note that the
communication between threads in different CUDA blocks in
the same CUDA kernel call is not possible, because CUDA
blocks may be dispatched to SMs in an arbitrary order. What
threads in a CUDA kernel can do is to send data to threads
in the following CUDA kernel by reading/writing the global
memory

CUDA compute capability 3.0 and later supports warp
shuffle instructions that permits exchanging of data stored in



registers in threads in a warp. The data exchange occurs at
the same time for all active threads in a warp. For example,if
__shfl(a, i) is executed by a CUDA block with a warp
of 32 threads, the value of register a of thread i is returned.
Since the data size for warp shuffle instructions must be 32 bits,
two separate invocations are necessary to exchange 64-bit data.
Warp shuffle instructions are more efficient than a conventional
data exchanging method using write/read operations to the
shared memory.

III. CONWAY’S GAME OF LIFE AND AN CONVENTIONAL
IMPLEMENTATION

The universe of the Conway’s Game of Life is a
2-dimensional array of cells, each of which takes one of two
states, 1 (alive) or 0 (dead). For simplicity, we assume that
the size of the array is

√
n ×

√
n. Let u0, u1, . . . denote

2-dimensional arrays such that u0 stores the initial states,
and each ut (t ≥ 1) is an array of cells after t-step transi-
tion. Let ut(i, j) denote the state of a cell at position (i, j)
(0 ≤ i, j ≤

√
n − 1) . For simplicity, we assume that the

2-dimensional array is wrap around to handle the state of cells
outside of the array. For example, the value of ut(i,−1) is that
of ut(i,

√
n − 1). Let st(i, j) be the number of alive cells in

eight neighbors, that is,

st(i, j) = ut(i− 1, j − 1) + ut(i− 1, j) + ut(i− 1, j + 1)

+ut(i, j − 1) + ut(i, j + 1) + ut(i+ 1, j − 1)

+ut(i+ 1, j) + ut(i+ 1, j + 1) (1)

The value of ut(i, j) (0 ≤ i, j ≤
√
n − 1) is determined by

the following formula:

gt(i, j) = 1 (alive) if st−1(i, j) = 3

or (st−1(i, j) = 2 and gt−1(i, j) = 1),
= 0 (dead) otherwise.

Hence, we can compute the value of ut(i, j) by the following
Boolean formula:

ut(i, j) = (st−1(i, j) = 3)

∨(ut−1(i, j) ∧ (st−1(i, j) = 2)) (2)

We have two arrangements, the word-per-cell and the
bit-per-cell arrangements for simulating the Game of Life
not only on the GPU but also on the CPU. The word-per-
cell arrangement is a conventional arrangement in which the
state of each cell is stored in a word of the memory, such
as a 32-bit integer or an 8-bit character. We assume that
the initial states of cells are stored in the global memory
of the GPU. For example, we can store the states u0(i, j)
(0 ≤ i, j ≤

√
n−1) of cells in a

√
n×
√
n 2-dimensional array

of 8-bit characters. We use a CUDA kernel with n threads to
compute the next states u1(i, j). For example, a CUDA kernel
invokes n

32 CUDA blocks with 32 threads each. Each thread
is assigned to a cell, and it evaluates formulas (1) and (2)
to compute the next state u1(i, j) and write it in the global
memory. Note that it is not possible to compute u2(i, j) by the
same CUDA kernel, because threads in different CUDA blocks
cannot communicate with each other. Thus, after a thread
computes and writes u1(i, j), it must terminate. A CUDA
kernel terminates when all threads complete the computation
of next states of cells. After that, the same CUDA kernel to

compute g2(i, j) is invoked. In other words, one CUDA kernel
call is necessary to simulate one-step transition and thus, T
CUDA kernel calls are performed for T -step simulation.

IV. BIT-PER-CELL ARRANGEMENTS, BITWISE SUMMING
TECHNIQUE, AND ONE-STEP SIMULATION

The main purpose of this section is to show an efficient
simulation of the Game of Life. The idea is to arrange the state
of each cell in a bit of a word, and compute the next state by
bitwise operations. These techniques has been presented and
the CPU implementation has been shown in [20].

A. Bit-per-cell arrangements

For more storage-efficient implementation of
2-dimensional array of cells, we can use the bit-per-cell
arrangement, which arranges each cell to a bit of a word. For
example, we use a 32-bit unsigned integer to store the states
of consecutive 32 cells. As illustrated in Figure 3, consecutive
32 cells in the same row is arranged in a 32-bit word. In
general, d consecutive cells in the same row is stored in a
d-bit word and thus n cells are stored in a

√
n ×

√
n
d array

of d-bit words. We can have two address modes, row-major
and column-major, to map addresses to these words. As
shown in the figure, the row-major/column-major bit-per-cell
arrangement maps addresses to words in row-major/column-
major order, respectively. Since CUDA supports 32-bit and
64-bit words, it makes sense to set d = 32 or d = 64 when
we implement the bit-per-cell arrangement in GPUs.

Note that we should use the column-major bit-per-cell
arrangement although most of existing implementations use
the row-major. For example, in a GPU implementation that
we will show later, a block of 32 × 32 cells are operated in
the same time. If we use the row-major order as illustrated
in Figure 3 (1), the leftmost top block is arranged in stride
addresses 0, 4, 8, . . ., and 124. On the other hand, memory
access is destined for coalesced addresses 0, 1, 2, . . ., and 31,
if we use the column-major order as illustrated in Figure 3 (2).

B. Bitwise summing technique

To simulate Game of Life stored in the bit-per-cell arrange-
ments, we can retrieve the state of an individual cell by bitwise
AND operation, compute the sum of neighbors by formulas (1)
and (2) and write the next state by bitwise OR operation.
However, this straightforward implementation of the bit-per-
cell arrangement is not efficient. We should use the bitwise
summing technique, which computes the bitwise sum of words
by fundamental bitwise operations such as bitwise OR and
bitwise AND. The original idea has been shown in [20]. We
extend this idea for further acceleration.

Suppose that we have three d-bit words A, B, and C
and we want to compute the sum of each bit. More specif-
ically, let A = ad−1ad−2 · · · a0, B = bd−1bd−2 · · · b0, C =
cd−1cd−2 · · · c0. The goal is to compute the bitwise sum of A,
B, and C, that is, the sum yixi such that yi ·2+xi = ai+bi+ci
for all i (0 ≤ i ≤ d − 1). The bitwise summing technique
computes such xi and yi as two words X = xd−1xd−2 · · ·x0,
and Y = yd−1yd−2 · · · y0. We will show that two words X
and Y can be computed simply by bitwise XOR (⊕), bitwise
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AND (∧), and bitwise OR (∨). By simulating the full adder,
we can compute X and Y in 7 bitwise binary operations as
follows:

X ← A⊕B ⊕ C,

Y ← (A ∧B) ∨ (B ∧ C) ∨ (C ∧A).

We can further reduce the number of bitwise operations to 5
if we use a temporal word T as follows:

T ← A⊕B,

X ← T ⊕ C,

Y ← (A ∧B) ∨ (T ∧ C).

To compute the next states of d cells stored in a d-bit
word, the states of 2d + 6 neighboring cells are necessary as
illustrated in Figure 4 (1), where d = 4. We store neighboring
cells in eight words A,B, . . . ,H as illustrated in Figure 4 (2),
which are used to compute the next state of word I . For
this purpose, we compute the bitwise sums as shown in
Figure 4 (3) and obtain two words I2 and I3, where each
bit of I2 and I3 is 1 if and only if the number of 1’s in the
corresponding position of eight words A,B, . . . ,H is 2 and
3, respectively. Clearly, using I2, I3, and the current value
of I , we can compute the next state of all cells in I . More
specifically, (I ∧I2)∨I3 is the next state of each cell in I . Let
([A-H]3, [A-H]2, [A-H]1, [A-H]0]) denote the bitwise sums of
each bit of A,B, . . . ,H . Also, let [A-H]23 = [A-H]2∨[A-H]3.
Clearly, I2 = 1 if ([A-H]23, [A-H]1, [A-H]0]) = (0, 1, 0) and
I3 = 1 if ([A-H]23, [A-H]1, [A-H]0]) = (0, 1, 1). Hence, we
can compute I2 and I3 from ([A-H]23, [A-H]1, [A-H]0]).

We will show how I2 and I3 are computed. We first
compute the bitwise sums of each of four pairs of two words.
For example, by computing ([AB]1, [AB]0)← (A∧B,A⊕B),
we obtain two bits ([AB]1, [AB]0) which represent the sum
of A and B. Similarly, we can obtain ([CD]1, [CD]0),
([EF ]1, [EF ]0), and ([GH]1, [GH]0). After that, we compute
the sum of pair ([AB]1, [AB]0) and ([CD]1, [CD]0), and
obtain three bits ([A-D]2, [A-D]1, [A-D]0). This can be
done by computing the sums from the least significant bit.
Similarly, we obtain the sum ([E-H]2, [E-H]1, [E-H]0).
Finally, we compute the sum of ([A-D]2, [A-D]1, [A-D]0)
and ([EH]2, [EH]1, [EH]0) and obtain three bits
([AH]23, [AH]1, [AH]0). From these three bits, the values
of I2 and I3 can be obtained and then, the next states of
I can be computed. The details of an algorithm, Algorithm
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SINGLE-WORD that computes I2, I3, and the next state of
I are as follows:

[Algorithm SINGLE-WORD]
1. ([AB]1, [AB]0)← (A ∧B,A⊕B)
2. ([CD]1, [CD]0)← (C ∧D,C ⊕D)
3. ([EF ]1, [EF ]0)← (E ∧ F,E ⊕ F )
4. ([GH]1, [GH]0)← (G ∧H,G⊕H)
// ([A-D]2, [A-D]1, [A-D]0])← ([AB]1, [AB]0)
// +([CD]1, [CD]0)
5. [A-D]0 ← [AB]0 ⊕ [CD]0
7. [A-D]1 ← [AB]1 ⊕ [CD]1 ⊕ ([AB]0 ∧ [CD]0)
8. [A-D]2 ← [AB]1 ∧ [CD]1
// ([E-H]2, [E-H]1, [E-H]0])← ([EF ]1, [EF ]0)
// +([GH]1, [GH]0)
9. [EH]0 ← [EF ]0 ⊕ [GH0]
10. [EH]1 ← [EF ]1 ⊕ [GH]1 ⊕ ([EF ]0 ∧ [GH]0)
11. [EH]2 ← [EF ]1 ∧ [GH]1
// ([A-H]23, [A-H]1, [A-H]0])← ([A-D]2, [A-D]1, [A-D]0])
// +([E-H]2, [E-H]1, [E-H]0])
12. [A-H]0 ← [A-D]0 ⊕ [E-H]0
13. X ← [A-D]0 ∧ [E-H]0
14. Y ← [A-D]1 ⊕ [E-H]1
15. [A-H]1 ← X ⊕ Y
16. [A-H]23 ← [A-D]2 ∨ [E-H]2

∨([A-D]1 ∧ [E-H]1) ∨ (X ∧ Y )
// (I, I2, I3)← (I, [A-H]23, [A-H]1, [A-H]0)

17. Z ← [A-H]23 ∧ [A-H]1
18. I2 ← [A-H]0 ∧ Z
19. I3 ← [A-H]0 ∧ Z
20. I ← (I ∧ I2) ∨ I3

Note that, when we compute ([A-D]2, [A-D]1, [A-D]0]) ←
([AB]1, [AB]0) + ([CD]1, [CD]0), the values of
([AB]1, [AB]0) and ([CD]1, [CD]0) can not be (1, 1).
Hence, [A-D]2 can be computed by formula [AB]1 ∧ [CD]1.

Let us evaluate the total number of binary operations
and unary operations performed in this algorithm for bit-per-
cell arrangement. For computing ([AB]1, [AB]0) ← (A ∧
B,A ⊕ B), two binary operations are performed. Thus,
the sums of four pairs can be computed by 8 binary op-
erations. Five binary operations are performed for com-
puting the sum of two bits, ([A-D]2, [A-D]1, [A-D]0]) ←
([AB]1, [AB]0) + ([CD]1, [CD]0). This computation is exe-
cuted twice, and thus, 10 binary operations are performed. For
computing ([A-H]23, [A-H]1, [A-H]0]), 9 binary operations
are performed. Finally, (I, I2, I3) is computed in 5 binary
operations and 2 unary operations. Thus, the total number of
operations is 4× 2+ 2× 5+ 9+ 5+ 2 = 34. Hence we have,

Lemma 1: The next states of cells stored in a word by the
bit-per-cell arrangement can be computed in 34 operations.

Let us implement bitwise summing technique in the GPU.
Since CUDA supports 32-bit and 64-bit bitwise operations, it
makes sense to use a 32-bit or 64-bit integer to store 32 or 64
cells. Suppose that we use 64-bit integers to store cells. Each
thread is assigned a word storing 64 cells, and it is responsible
for computing the next states of these cells. We can invoke a
CUDA kernel with n

64·32 CUDA blocks with 32 threads each
for n cells. Each word with 64 cells and 8 neighboring words
are read by a thread assigned to it. The thread computes 8
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Fig. 5. Illustrating 12 words for computing next states of cells in two words
by Algorithm DOUBLE-WORD

words A,B, . . . ,H from these words, and compute the next
state of I by 34 operations. After that, it writes the resulting
next states of I in the global memory and terminates. After all
threads terminate, the CUDA kernel terminates. In this way,
one-step simulation is performed by a single CUDA kernel
call. The same CUDA kernel call is repeatedly performed T
times to complete the T -step simulation.

V. OUR ACCELERATION TECHNIQUES

The main purpose of this section is to show our new ideas
and techniques for further acceleration of simulation of the
Game of Life.

A. Bitwise summing technique for two words

We can reduce the number of operations if next states
of cells in two words are computed at the same time.
If we just execute Algorithm SINGLE-WORD twice,
we need 68 operations. We will show that it can be
reduced to 59 operations by sharing the computation for
two words. For this purpose, we partition the cells as
illustrated in Figure 5. We compute the next states of cells
in two words K and L in the figure at the same time.
For updating K, the sum of words A,B,C,D,E, I, J, L
is computed. Also, the sum of D,E, F,G,H, I, J,K
is computed for word L. More specifically, we
compute ([A-EIJL]23, [A-EIJL]1, [A-EIJL]0]) and
([D-K]23, [D-K]1, [D-K]0). Clearly, four words
D,E, I, J are included in both sets of words. Hence,
by computing the sum of these words first, we can
reduce the total number of operations. Once we have
(K, [A-EIJL]23, [A-EIJL]1, [A-EIJL]0]), we can compute
(K,K2,K3) where K stores next states of K, and each bit
of K2 and K3 is 1 if and only if the number of 1’s in the
corresponding position of eight words A,B,C,D,E, I, J, L
is 2 and 3, respectively. Similarly, we can obtain (L,L2, L3)
using (L, [D-K]23, [D-K]1, [D-K]0]).

Using this idea, next states of cells in two words can be
computed by Algorithm DOUBLE-WORD as follows:

[Algorithm DOUBLE-WORD]



1. ([DE]1, [DE]0)← (D ∧ E,D ⊕ E)
2. ([IJ ]1, [IJ ]0)← (I ∧ J, I ⊕ J)
3. ([AB]1, [AB]0)← (A ∧B,A⊕B)
4. ([CL]1, [CL]0)← (C ∧ L,C ⊕ L)
5. ([FG]1, [FG]0)← (F ∧G,F ⊕G)
6. ([HK]1, [HK]0)← (H ∧K,H ⊕K)
7. ([DEIJ ]2, [DEIJ ]1, [DEIJ ]0])← ([DE]1, [DE]0)

+([IJ ]1, [IJ ]0)
8. ([ABCL]2, [ABCL]1, [ABCL]0])← ([AB]1, [AB]0)

+([CL]1, [CL]0)
9. ([FGHK]2, [FGHK]1, [FGHK]0])← ([FG]1, [FG]0)

+([HK]1, [HK]0)
10. ([A-EIJL]23, [A-EIJL]1, [A-EIJL]0])

← ([ABCL]2, [ABCL]1, [ABCL]0])
+([DEIJ ]2, [DEIJ ]1, [DEIJ ]0])

11. ([D-K]23, [D-K]1, [D-K]0])
← ([FGHK]2, [FGHK]1, [FGHK]0])
+([DEIJ ]2, [DEIJ ]1, [DEIJ ]0])

12. (K,K2,K3)← (K, [A-EIJL]23, [A-EIJL]1, [A-EIJL]0])
13. (L,L2, L3)← (I, [D-K]23, [D-K]1, [D-K]0])

Let us evaluate the total number of operations. Each of
Lines 1-6 can be done in two binary operations. Lines 7-9 can
be done in 5 binary operations each. Lines 10 and 11 can be
performed in 9 binary operations each. Finally, lines 12 and 13
takes 5 binary operations and two unary operations. Thus, the
total number of operations is 6×2+3×5+2×9+2×7 = 59,
and we have,

Lemma 2: The next states of cells stored in two words by
the bit-per-cell arrangement can be computed in 59 operations

Similarly to the GPU implementation using the global
memory, we can implement the algorithm for Lemma 2 in
CUDA programming model. For example, a CUDA kernel
with n

(64·32·2) CUDA blocks with 32 threads each is repeatedly
invoked. Each thread is responsible for computing the next
states of two words. Since the memory access to the global
memory can be shared for updating two words, we can further
accelerate the computation.

B. Multiple-step simulation using the shared memory

We can accelerate the computation if multiple steps simu-
lation is performed on the shared memory. More specifically,
a CUDA block is assigned to multiple words, say, 32 words. It
copies words storing the cell states to the shared memory and
simulates multiple steps on the shared memory. The resulting
states are copied to the global memory.

If multiple-step simulation is performed in a block of
2-dimensional array, cells in the boundary of the block may
not have correct states. More specifically, suppose that we have
a block of d× d cells in a large 2-dimensional array of cells.
Since we do not have the states of cells outside of the block,
we simply assume that those cells always take state 0.

We can say that the boundary cells are dirty after one-step
simulation in the sense that their states may not be correct,
because at least one of neighboring cells of each boundary
cell is not taken into account. Also, cells inside the boundary
are clean in the sense that their states are guaranteed to be
correct. After another step simulation, neighboring cells of the
dirty cells, that is, the boundary cells of clean cells become

d

d

t tm

m

t

t

dirty cellsclean cells

Fig. 6. Dirty cells

dirty. In general, cells in the distance t from the boundary
become dirty after t-step simulation and m×m cells are clean,
where m = d− 2t, as illustrated Figure 6.

To simulate multiple steps of all cells, the
√
n ×

√
n

2-dimensional array in the global memory is partitioned into√
n

m ×
√
n

m slices of size m×m each as illustrated in Figure 7.
Each slice is expanded by t cells for every direction, and we
obtain a d × d block. A CUDA block is assigned to a block
and performs t-step simulation using the shared memory. For
this purpose, it copies the states of d × d cells in a block
to the shared memory. Note that each row of d × d cells is
stored in one or two d-bit words. Thus, we read at most 2d
words to copy d × d cells from the global memory. In the
shared memory, t-step simulation is performed. After that, the
resulting states in the m × m slice are written in the global
memory. Similarly, we need to perform write operations for
at most 2m words to the global memory. Since this t-step
simulation for all blocks must be completed before the next
t-step simulation is performed. Hence, each t-step simulation
must be performed by one CUDA kernel call and thus T -step
simulation can be done by T

t CUDA kernel calls.

Clearly, we should use the column-major bit-per-cell ar-
rangement because cells in a block are arranged in neighboring
addresses. More specifically, the d or 2d words in the global
memory storing d× d cells are stride if we use the row-major
bit-per-cell arrangement, On the other hand, the 2d words are
in two consecutive addresses of length d each if the column-
major bit-per-cell arrangement is used.

If Algorithm DOUBLE-WORD is implemented using the
shared memory as it is, memory access to the shared memory
has bank conflicts. The shared memory of Maxwell architec-
ture has 32 memory banks with 32-bit width [25]. If we store
64-bit data in the shared memory, each of them are stored in
two adjacent banks. In other words, a pair of two adjacent
banks are used to store a 64-bit number. Hence, we can think
that the shared memory has 16 memory banks with 64-bit
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width. Further, if each of 32 threads in a warp access to a
64-bit number in the shared memory, 16 threads in the first
half warp try to access them, and then 16 threads in the second
half warp do the same thing. Suppose that 64 64-bit numbers
that constitute a block (Figure 8 (1)) and let a(i) (0 ≤ i ≤ 63)
be the i-th 64-bit number. is stored in the 16 banks of the
shared memory as it is (Figure 8 (2)). If Algorithm DOUBLE-
WORD is executed using 32 threads in a warp, the first warp
may access 64-bit numbers a(2), a(4), a(6), . . . , a(32). As we
can see in Figure 8 (2), two numbers are in the same bank.

To avoid bank conflicts, we use the shift arrangement as
illustrated in Figure 8 (3). In the shift arrangement, the second
row and the fourth row are shifted by one. We can confirm
that a(2), a(4), a(6), . . . , a(32) are arranged in distinct banks.
The first warp also may access, sets of 16 numbers

• a(0), a(2), a(4), . . . , a(30), and

• a(1), a(3), a(5), . . . , a(31).

We can confirm that 16 numbers in each set are in distinct
banks. Thus, we can avoid bank conflicts by the shift arrange-
ment.

We can observe that, we should select an appropriate value
of t (1 ≤ t < d

2 ) for fixed n and d that minimizes the running
time. We assume that the cost for computing the next state
of d cells stored in a word is one unit. Also, let c be the
cost of miscellaneous overhead for dispatching CUDA blocks
and reading/writing the states of d cells in the global memory.
Under this assumption, we can write that the cost of t-step
simulation of a slice of size m×m is t+ c. Hence, the cost
of T -step simulation of

√
n×
√
n cells is:

T

t
× n

m2
× (t+ c) =

nT (t+ c)

t(d− 2t)2

This cost is minimized when 4t2 + 6ct− dc = 0, that is,

t =

√
9c2 + 4dc− 3c

4d2
.

Clearly, t is an increasing function of c and the value of t
is in the range [0, d

6 ]. Intuitively, this is reasonable because
the overhead c is large, we should minimize the number T

t of
CUDA kernel calls.

C. Further acceleration using warp shuffle

The memory access latency of the shared memory is not
small [12]. Hence, if we can implement words of cells as
registers, we can further accelerate the computation. We will
show that t-step simulation can be done using registers without
using the shared memory.

The algorithm is almost the same as in Subsection V-B,
which uses the shared memory for t-step simulation. Instead
of using the shared memory, we use registers which can be
accessed faster than the shared memory. However, registers
are assigned to a thread, and they can be accessed only by
the assigned thread. Hence, we use a warp shuffle instruction,
which copies registers of threads in the same warp, as illus-
trated in Figure 9. First, each thread copies two words storing
cells from the global memory. For one-step simulation, each
thread copies registers of two neighboring threads. After that,
one-step simulation is performed for two words. This operation
is repeated t times for t-step simulation. The resulting states
of cells are copied from the registers to the global memory.

VI. EXPERIMENTAL RESULTS

The main purpose of this section to show the performance
of algorithms for Game of Life.

We have evaluated the running time of 1024-step simula-
tion for a 16384×16384 (214×214) array. The array is wrap-
around in the sense that cells in the top-row and the bottom-
row are neighbor. Also,the leftmost-column and the rightmost-
column are neighbor. We have used GeForce GTX TITAN X
and Intel Xeon X7460 CPU (2.66GHz) for the experiment.
GeForce GTX TITAN X has 16 streaming multiprocessors
with 192 cores each.

Table I shows the running time of straightforward im-
plementations, for the word-per-cell and the bit-per-cell. In
the word-per-cell, we have used 8-bit unsigned characters
to store the states cells. In other words, a 2-dimensional
array of 16384 × 16384 unsigned characters are used and
evaluated formulas (1) and (2) to obtain the next states. The
CPU implementation of the word-per-cell is obvious. The
CPU computes the next state of every cell one by one. To
implement the word-per-cell in the GPU, each cell is assigned
one thread. More specifically, a CUDA kernel computing
1-step transition invokes 223 CUDA blocks with 32 threads
each. The 2-dimensional array storing the states of cells are
arranged in the global memory. Each thread reads the states
of cells necessary compute the next state of an assigned cell.
It computes the next cell by formulas (1) and (2) and writes
the resulting state in the global memory. Note that, a CUDA
kernel call can compute only 1-step transition and thus 1024
CUDA kernel calls are necessary to compute the states after
1024 steps.

We have used 64-bit unsigned long long integers for the
bit-per-cell arrangement. Hence, 16384 × 16384 = 228 cells
are implemented in 16384 × 256 = 222 words. To see the
difference of performance of Algorithms SINGLE-WORD and
DOUBLE-WORD, we have implemented both algorithms. To
compute the next states of all cells, the CPU executes SINGLE-
WORD 222 times. It also need to execute DOUBLE-WORD
221 times for 1-step simulation. To compute the next states
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of all cells by Algorithm SINGLE-WORD, a CUDA kernel
of 217 CUDA blocks of 32 threads each is invoked. Also, for
1-step simulation by Algorithm DOUBLE-WORD, 216 CUDA
blocks of 32 threads each are used. These 1-step simulations
are repeated 1024 times for 1024-step simulation.

From Table I, the GPU implementations can accelerate
the computation with a speed-up factor of more than 100 for
the word-per-cell arrangement and the bit-per-cell-arrangement
using Algorithm SINGLE-WORD. Since the state of one cell
is stored using 8 bits in the word-per-cell, we can expect that
an implementation of the bit-per-cell is 8 times faster than
that of the word-per-cell Quite surprisingly, the bit-per-cell
implementation can be more than 20 times faster than the
word-per-cell implementation. This is because memory access
to 8-bit words is not efficient in 64-bit processor architecture
Thus, we should not use word-per-cell arrangement and must
use bit-per-cell arrangement for 64-bit words. Further, we can
see that Algorithm DOUBLE-WORD on the CPU is much
faster than Algorithm SINGLE-WORD. On the other hand,
Algorithm DOUBLE-WORD on the GPU does not achieve an
improvement over Algorithm SINGLE WORD. This is because
a straightforward implementation of Algorithm DOUBLE-
WORD involves stride memory access to the global memory,
while that of Algorithm SINGLE-WORD does not.

For further acceleration, we implemented multiple-step
simulation with bit-per-cell arrangement using the shared

memory and the registers on the GPU. Since we want to avoid
barrier synchronization using __syncthreads(), we use
CUDA blocks with one single warp of 32 threads each. Also,
we implemented simulation of the Game of Life for a block
with 32× 32 cells and with 64× 64 cells as follows:
32×32 block: A block of size 32×32 is implemented using
32 32-bit unsigned integers, each of which stores the states of
32 cells. A CUDA block with 32 threads is assigned 32× 32
cells. Each thread computes t-step transition of 32 cells stored
in a 32-bit unsigned integer by repeating Algorithm SINGLE-
WORD.
64×64 block: A block of size 64×64 is implemented using
64 64-bit unsigned long long integers, each of which stores
the states of 64 cells. Since a warp of 32 threads are used for
64 words, we execute SINGLE-WORD twice or DOUBLE-
WORD once to compute 1-step transition. Each thread repeat
this t times to complete t-step transition.

To find the best value of the number t of steps computed
by a single CUDA kernel call, we evaluated the running time
for t = 2, 4, 8, and 16. Recall that the 2-dimensional array of
size 16384× 16384 is partitioned into 16384

m × 16384
m slices of

size m×m each where m = d− 2t and d = 32 for 32× 32
blocks and d = 64 for 64 × 64 blocks. Hence, it makes no
sense to perform 16-step simulation for 32×32 blocks, because
m = d− 2t = 0.

Table II shows the running time of 1024-step simulation



TABLE I. THE RUNNING TIME (IN SECONDS) OF CPU IMPLEMENTATION AND GPU IMPLEMENTATION (GLOBAL MEMORY)

word-per-cell bit-per-cell
SINGLE-WORD DOUBLE-WORD

Intel Xeon X7460 CPU 2151 84.8 58.3
Nvidia GeForce GTX TITAN X 119.3 0.574 0.672

speed-up 111 147 86.8

TABLE II. THE RUNNING TIME (IN SECONDS) OF GPU IMPLEMENTATIONS OF MULTIPLE-STEP SIMULATION

GPU (shared memory) GPU (register+warp shuffle)
32 × 32 block 64 × 64 block 32 × 32 block 64 × 64 block

steps SINGLE-WORD SINGLE-WORD DOUBLE-WORD SINGLE-WORD SINGLE-WORD DOUBLE-WORD
2 0.607 0.439 0.385 0.543 0.390 0.379
4 0.482 0.301 0.237 0.386 0.216 0.194
8 0.850 0.356 0.248 0.545 0.197 0.163
16 - 0.762 0.511 - 0.377 0.295

of the Game of Life with 16384× 16384 cells. In most cases,
implementations of 64×64 blocks are faster than that of 32×32
blocks, because 64-bit memory access can maximize the mem-
ory access bandwidth for the global memory and the shared
memory. Also, implementations using Algorithm DOUBLE-
WORD are faster than the shared memory implementations
except for a few exceptions. From the table, 8-step simulation
with 64 × 64 block using Algorithm DOUBLE-WORD runs
0.163 seconds, which is the minimum over all implementations
that we have developed.

VII. CONCLUSION

The main purpose of this paper presents several techniques
for accelerating the simulation of the Conway’s Game of Life.
In particular, we have presented techniques of (1) sharing the
sum computation for two words, (2) multiple-step simulation,
and (3) register with warp shuffle instructions. The best im-
plementation performs 1024-step simulation of 16384×16384
cells in 0.163 seconds on GeForce GTX TITAN X GPU. This
implies that it achieves 1.69×1012 updates per second, which
is more than 68 times faster than previously presented best
implementation.
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